Muhammad Rizwan , Muhammad Sher Afgan , Seher Saleem , Kaikai Kou , Zongyu Hou , Zhe Wang
{"title":"Double Pulse laser-induced breakdown spectroscopy (DP-LIBS): A Comprehensive technique Review","authors":"Muhammad Rizwan , Muhammad Sher Afgan , Seher Saleem , Kaikai Kou , Zongyu Hou , Zhe Wang","doi":"10.1016/j.sab.2025.107168","DOIUrl":null,"url":null,"abstract":"<div><div>Double pulse-laser induced breakdown spectroscopy (DP-LIBS) is one of the most widely adopted variants of laser-induced breakdown spectroscopy for rapid elemental analysis. DP-LIBS is an effective way of improving the emission line intensities and increasing the analytical capabilities of conventional LIBS. We comprehensively overviewed different aspects of DP-LIBS from fundaments to applications. The key mechanisms of pre-ablation, reheating, and interpulse delay have been discussed. Different geometrical configurations for the two pulses including collinear, cross-beam, orthogonal pre-ablation, and orthogonal reheating are outlined. The pulse durations of the ablating laser have a huge impact on the ablation process, thus, the effects of the temporal settings of the laser pulse duration are explained. This includes ns-ns, fs-fs, fs-ns, and long short DP-LIBS. The impacts of double-pulse LIBS on the ablation process and analytical outcomes such as signal intensity, repeatability, ablation rate, crater and plasma size, and plasma parameters are encapsulated. Finally, several DP-LIBS applications from metal and alloy analysis and explosive detection to industrial analysis have been stipulated. DP-LIBS approach results in a notable enhancement in the emission intensity; however, repeatability is a key parameter to consider for meaningful applications. Among different temporal configurations, long-short DP-LIBS provides relatively smoother and greater interaction of the laser beam with the plasma plume and sample, hence giving a more temporally efficient energy delivery to the plasma and sample making it more suitable for intensity enhancement and signal improvement among other variants.</div></div>","PeriodicalId":21890,"journal":{"name":"Spectrochimica Acta Part B: Atomic Spectroscopy","volume":"227 ","pages":"Article 107168"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part B: Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0584854725000539","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Double pulse-laser induced breakdown spectroscopy (DP-LIBS) is one of the most widely adopted variants of laser-induced breakdown spectroscopy for rapid elemental analysis. DP-LIBS is an effective way of improving the emission line intensities and increasing the analytical capabilities of conventional LIBS. We comprehensively overviewed different aspects of DP-LIBS from fundaments to applications. The key mechanisms of pre-ablation, reheating, and interpulse delay have been discussed. Different geometrical configurations for the two pulses including collinear, cross-beam, orthogonal pre-ablation, and orthogonal reheating are outlined. The pulse durations of the ablating laser have a huge impact on the ablation process, thus, the effects of the temporal settings of the laser pulse duration are explained. This includes ns-ns, fs-fs, fs-ns, and long short DP-LIBS. The impacts of double-pulse LIBS on the ablation process and analytical outcomes such as signal intensity, repeatability, ablation rate, crater and plasma size, and plasma parameters are encapsulated. Finally, several DP-LIBS applications from metal and alloy analysis and explosive detection to industrial analysis have been stipulated. DP-LIBS approach results in a notable enhancement in the emission intensity; however, repeatability is a key parameter to consider for meaningful applications. Among different temporal configurations, long-short DP-LIBS provides relatively smoother and greater interaction of the laser beam with the plasma plume and sample, hence giving a more temporally efficient energy delivery to the plasma and sample making it more suitable for intensity enhancement and signal improvement among other variants.
期刊介绍:
Spectrochimica Acta Part B: Atomic Spectroscopy, is intended for the rapid publication of both original work and reviews in the following fields:
Atomic Emission (AES), Atomic Absorption (AAS) and Atomic Fluorescence (AFS) spectroscopy;
Mass Spectrometry (MS) for inorganic analysis covering Spark Source (SS-MS), Inductively Coupled Plasma (ICP-MS), Glow Discharge (GD-MS), and Secondary Ion Mass Spectrometry (SIMS).
Laser induced atomic spectroscopy for inorganic analysis, including non-linear optical laser spectroscopy, covering Laser Enhanced Ionization (LEI), Laser Induced Fluorescence (LIF), Resonance Ionization Spectroscopy (RIS) and Resonance Ionization Mass Spectrometry (RIMS); Laser Induced Breakdown Spectroscopy (LIBS); Cavity Ringdown Spectroscopy (CRDS), Laser Ablation Inductively Coupled Plasma Atomic Emission Spectroscopy (LA-ICP-AES) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS).
X-ray spectrometry, X-ray Optics and Microanalysis, including X-ray fluorescence spectrometry (XRF) and related techniques, in particular Total-reflection X-ray Fluorescence Spectrometry (TXRF), and Synchrotron Radiation-excited Total reflection XRF (SR-TXRF).
Manuscripts dealing with (i) fundamentals, (ii) methodology development, (iii)instrumentation, and (iv) applications, can be submitted for publication.