Sunil T. Galatage , Arehalli S. Manjappa , Kameswara Rao Sankula , Sameer J. Nadaf , Nagineni Sudarshan Rao , Sushma N , Sailaja Gunnam , P. Shyamsundar , Rahul J. Kadam , K. Gourisankar , Potti Lakshmanarao , Mallikarjuna Reddy Kaipu
{"title":"Development and characterization of ethosomes of Acacia senegal for improved topical treatment of breast cancer","authors":"Sunil T. Galatage , Arehalli S. Manjappa , Kameswara Rao Sankula , Sameer J. Nadaf , Nagineni Sudarshan Rao , Sushma N , Sailaja Gunnam , P. Shyamsundar , Rahul J. Kadam , K. Gourisankar , Potti Lakshmanarao , Mallikarjuna Reddy Kaipu","doi":"10.1016/j.nxmate.2025.100556","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The quest to improve the effectiveness of anti-breast cancer medicines has diverted the researchers to explore a topical administration of drugs onto the breast. The different parts of <em>Acacia senegal</em> plant (ASP) have showed promising anticancer effects but with marred efficacy. Present research was aimed to develop, optimize, and characterize ASP root and stem bark extract (ASPE)-loaded ethosomes (ASPE-ETH) as carriers for improved topical treatment of breast cancer. Ethosomes were formulated and optimized using 3<sup>2</sup> factorial design. Optimized ASPE-ETH was evaluated for vesicle size, zeta potential, <em>in vitro</em> skin permeation, cytotoxicity, cellular uptake and live deal cell assay <em>etc</em>.</div></div><div><h3>Results</h3><div>ASPE-ETH appeared as unilamellar nano-vesicles (219 ± 7 nm) with nearly round in shape and had zeta potential of 32.1 ± 2.43 mV. ASPE-ETH demonstrated significant (p < 0.01) <em>in vitro</em> cytotoxicity (IC<sub>50</sub>: 47.68 ± 1.83 µg/mL) than ASPE (184.3 ± 3.68 µg/mL) against MCF-7 Cells. Compared to ASPE, ASPE-ETH treatment caused apoptosis of large proportion of cancer cells. The above results could be correlated to the increased cell uptake of ASPE-ETH as shown by <em>in vitro</em> cell uptake study. Furthermore, the <em>in-vitro</em> skin permeation study results revealed enhanced penetration of ASPE-ETH into the deeper layers of the skin.</div></div><div><h3>Conclusion</h3><div>The study results revealed that ASPE-ETH could be used as a potential alternative treatment approach to conventional chemotherapy. However; further <em>in vivo</em> animal studies are required to establish its efficacy in the treatment of breast cancer.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100556"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825000747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The quest to improve the effectiveness of anti-breast cancer medicines has diverted the researchers to explore a topical administration of drugs onto the breast. The different parts of Acacia senegal plant (ASP) have showed promising anticancer effects but with marred efficacy. Present research was aimed to develop, optimize, and characterize ASP root and stem bark extract (ASPE)-loaded ethosomes (ASPE-ETH) as carriers for improved topical treatment of breast cancer. Ethosomes were formulated and optimized using 32 factorial design. Optimized ASPE-ETH was evaluated for vesicle size, zeta potential, in vitro skin permeation, cytotoxicity, cellular uptake and live deal cell assay etc.
Results
ASPE-ETH appeared as unilamellar nano-vesicles (219 ± 7 nm) with nearly round in shape and had zeta potential of 32.1 ± 2.43 mV. ASPE-ETH demonstrated significant (p < 0.01) in vitro cytotoxicity (IC50: 47.68 ± 1.83 µg/mL) than ASPE (184.3 ± 3.68 µg/mL) against MCF-7 Cells. Compared to ASPE, ASPE-ETH treatment caused apoptosis of large proportion of cancer cells. The above results could be correlated to the increased cell uptake of ASPE-ETH as shown by in vitro cell uptake study. Furthermore, the in-vitro skin permeation study results revealed enhanced penetration of ASPE-ETH into the deeper layers of the skin.
Conclusion
The study results revealed that ASPE-ETH could be used as a potential alternative treatment approach to conventional chemotherapy. However; further in vivo animal studies are required to establish its efficacy in the treatment of breast cancer.