Synthesis of two-dimensional SnO2-WO3 (2D-TTO) heterojunction Nanosheet and its application as a highly sensitive and selective fluorescence sensor for Nifedipine detection in biological and environmental samples

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Muhammad Mustafa , Shams Ur Rehman , Hui-Fen Wu
{"title":"Synthesis of two-dimensional SnO2-WO3 (2D-TTO) heterojunction Nanosheet and its application as a highly sensitive and selective fluorescence sensor for Nifedipine detection in biological and environmental samples","authors":"Muhammad Mustafa ,&nbsp;Shams Ur Rehman ,&nbsp;Hui-Fen Wu","doi":"10.1016/j.flatc.2025.100836","DOIUrl":null,"url":null,"abstract":"<div><div>Hypertension and high blood pressure are significant global health issues, with increasing reliance on nifedipine for treatment. However, excessive use of nifedipine (NIF) poses serious risks to human health, the environment, and aquatic life, necessitating precise monitoring. This study reports the synthesis of two-dimensional Tin Tungsten Oxide (2D-TTO) heterojunction nanosheets via a solvothermal method followed by ultra-probe sonication, and their application as a fluorescence sensor for sensitive and selective detection of NIF. The photoluminescence (PL) analysis of 2D-TTO nanosheets revealed stable bluish-green fluorescence at 442 nm (λem) when excited at 360 nm (λex). After the characterization and optimization for the nanomaterials, the 2D-TTO fluorescence nanosheets were utilized to quantify NIF through fluorescence quenching. The NIF successfully quenched the fluorescence via the combination of electron and energy transfer mechanisms. The sensor achieved a detection limit (LOD) of 7.2 nM with excellent linearity (R<sup>2</sup> = 0.9979). Real-world applicability was validated using spiked human urine, river water, and pharmaceutical samples, demonstrating recovery rates of 95–106 %. These findings have demonstrated the power of heterojunction 2D-TTO nanosheets to act as a novel, label-free fluorescent sensor for accurate and reliable NIF detection in biological, environmental, and pharmaceutical samples, offering a superior method compared with the traditional dye-based fluorescence nanosensors or any other current liquid/solution state nanosensors as the 2D-TTO sensor is a solid-state nanosensor that is much more stable than those of the zero-dimensional nanosensors such as quantum dots or nanoclusters.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"50 ","pages":"Article 100836"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262725000303","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hypertension and high blood pressure are significant global health issues, with increasing reliance on nifedipine for treatment. However, excessive use of nifedipine (NIF) poses serious risks to human health, the environment, and aquatic life, necessitating precise monitoring. This study reports the synthesis of two-dimensional Tin Tungsten Oxide (2D-TTO) heterojunction nanosheets via a solvothermal method followed by ultra-probe sonication, and their application as a fluorescence sensor for sensitive and selective detection of NIF. The photoluminescence (PL) analysis of 2D-TTO nanosheets revealed stable bluish-green fluorescence at 442 nm (λem) when excited at 360 nm (λex). After the characterization and optimization for the nanomaterials, the 2D-TTO fluorescence nanosheets were utilized to quantify NIF through fluorescence quenching. The NIF successfully quenched the fluorescence via the combination of electron and energy transfer mechanisms. The sensor achieved a detection limit (LOD) of 7.2 nM with excellent linearity (R2 = 0.9979). Real-world applicability was validated using spiked human urine, river water, and pharmaceutical samples, demonstrating recovery rates of 95–106 %. These findings have demonstrated the power of heterojunction 2D-TTO nanosheets to act as a novel, label-free fluorescent sensor for accurate and reliable NIF detection in biological, environmental, and pharmaceutical samples, offering a superior method compared with the traditional dye-based fluorescence nanosensors or any other current liquid/solution state nanosensors as the 2D-TTO sensor is a solid-state nanosensor that is much more stable than those of the zero-dimensional nanosensors such as quantum dots or nanoclusters.

Abstract Image

二维SnO2-WO3 (2D-TTO)异质结纳米片的合成及其在生物和环境样品中检测硝苯地平的高灵敏度和选择性荧光传感器的应用
高血压和高血压是重大的全球健康问题,越来越多地依赖硝苯地平进行治疗。然而,硝苯地平(NIF)的过度使用对人类健康、环境和水生生物构成严重风险,需要进行精确监测。本文报道了采用溶剂热法和超探针超声合成二维氧化锡钨(2D-TTO)异质结纳米片,并将其作为荧光传感器用于NIF的灵敏和选择性检测。在360 nm (λex)激发下,2D-TTO纳米片在442 nm (λem)处发出稳定的蓝绿色荧光。在对纳米材料进行表征和优化后,利用2D-TTO荧光纳米片通过荧光猝灭来定量NIF。NIF通过电子和能量传递机制的结合成功地猝灭了荧光。该传感器的检出限(LOD)为7.2 nM,线性关系良好(R2 = 0.9979)。实际应用验证了加标人尿、河水和药物样品,回收率为95 - 106%。这些发现证明了异质结2D-TTO纳米片作为一种新型的、无标记的荧光传感器在生物、环境和药物样品中准确可靠地检测NIF的能力。与传统的染料荧光纳米传感器或任何其他当前的液体/溶液状态纳米传感器相比,2D-TTO传感器是一种固态纳米传感器,比量子点或纳米团簇等零维纳米传感器稳定得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信