Requirements for trustworthy AI-enabled automated decision-making in the public sector: A systematic review

IF 12.9 1区 管理学 Q1 BUSINESS
Olusegun Agbabiaka , Adegboyega Ojo , Niall Connolly
{"title":"Requirements for trustworthy AI-enabled automated decision-making in the public sector: A systematic review","authors":"Olusegun Agbabiaka ,&nbsp;Adegboyega Ojo ,&nbsp;Niall Connolly","doi":"10.1016/j.techfore.2025.124076","DOIUrl":null,"url":null,"abstract":"<div><div>With AI adoption for decision-making in the public sector projected to rise with profound socio-ethical impacts, the need to ensure its trustworthy use continues to attract research attention. We analyze the existing body of evidence and establish trustworthiness requirements for AI-enabled automated decision-making (ADM) in the public sector, identifying eighteen aggregate facets. We link these facets to dimensions of trust in automation and institution-based trust to develop a theory-oriented research framework. We further map them to the OECD AI system lifecycle, creating a practice-focused framework. Our study has theoretical, practical and policy implications. First, we extend the theory on technological trust. We also contribute to trustworthy AI literature, shedding light on relatively well-known requirements like accountability and transparency and revealing novel ones like context sensitivity, feedback and policy learning. Second, we provide a roadmap for public managers and developers to improve ADM governance practices along the AI lifecycle. Third, we offer policymakers a basis for evaluating possible gaps in current AI policies. Overall, our findings present opportunities for further research and offer some guidance on how to navigate the multi-dimensional challenges of designing, developing and implementing ADM for improved trustworthiness and greater public trust.</div></div>","PeriodicalId":48454,"journal":{"name":"Technological Forecasting and Social Change","volume":"215 ","pages":"Article 124076"},"PeriodicalIF":12.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technological Forecasting and Social Change","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040162525001076","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

With AI adoption for decision-making in the public sector projected to rise with profound socio-ethical impacts, the need to ensure its trustworthy use continues to attract research attention. We analyze the existing body of evidence and establish trustworthiness requirements for AI-enabled automated decision-making (ADM) in the public sector, identifying eighteen aggregate facets. We link these facets to dimensions of trust in automation and institution-based trust to develop a theory-oriented research framework. We further map them to the OECD AI system lifecycle, creating a practice-focused framework. Our study has theoretical, practical and policy implications. First, we extend the theory on technological trust. We also contribute to trustworthy AI literature, shedding light on relatively well-known requirements like accountability and transparency and revealing novel ones like context sensitivity, feedback and policy learning. Second, we provide a roadmap for public managers and developers to improve ADM governance practices along the AI lifecycle. Third, we offer policymakers a basis for evaluating possible gaps in current AI policies. Overall, our findings present opportunities for further research and offer some guidance on how to navigate the multi-dimensional challenges of designing, developing and implementing ADM for improved trustworthiness and greater public trust.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
21.30
自引率
10.80%
发文量
813
期刊介绍: Technological Forecasting and Social Change is a prominent platform for individuals engaged in the methodology and application of technological forecasting and future studies as planning tools, exploring the interconnectedness of social, environmental, and technological factors. In addition to serving as a key forum for these discussions, we offer numerous benefits for authors, including complimentary PDFs, a generous copyright policy, exclusive discounts on Elsevier publications, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信