M. Bergin , C.J. Hatchwell , M.G. Barr, A. Fahy, P.C. Dastoor
{"title":"Spatially resolved lattice characterization using a scanning helium microscope","authors":"M. Bergin , C.J. Hatchwell , M.G. Barr, A. Fahy, P.C. Dastoor","doi":"10.1016/j.vacuum.2025.114163","DOIUrl":null,"url":null,"abstract":"<div><div>The scanning helium microscope (SHeM) uses low energy helium atoms (<span><math><mi>E</mi></math></span> <span><math><mo><</mo></math></span>100<!--> <!-->meV, <span><math><mrow><mi>λ</mi><mo>∼</mo></mrow></math></span>0.05 nm) to collect surface sensitive images of samples. Recent work has focused on in-situ measurements of the scattering distribution from a spatially resolved region to determine material properties such as local lattice features through atomic diffraction. To date, these measurements have been restricted to in-plane scans. Here we present instrumentation for the in-situ collection of two dimensional helium scattering distributions in a SHeM. The detection stage was manufactured using UHV compatible 3D printing and then manipulated using in-vacuum stages to measure the distributions. To demonstrate the capabilities of the instrument, several diffraction patterns from a LiF crystal were collected. These diffraction patterns have then been used to both determine the thermal attenuation of the specular peak, as well as a benchmark for comparison to current helium-surface interaction potentials.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"238 ","pages":"Article 114163"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X25001538","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The scanning helium microscope (SHeM) uses low energy helium atoms ( 100 meV, 0.05 nm) to collect surface sensitive images of samples. Recent work has focused on in-situ measurements of the scattering distribution from a spatially resolved region to determine material properties such as local lattice features through atomic diffraction. To date, these measurements have been restricted to in-plane scans. Here we present instrumentation for the in-situ collection of two dimensional helium scattering distributions in a SHeM. The detection stage was manufactured using UHV compatible 3D printing and then manipulated using in-vacuum stages to measure the distributions. To demonstrate the capabilities of the instrument, several diffraction patterns from a LiF crystal were collected. These diffraction patterns have then been used to both determine the thermal attenuation of the specular peak, as well as a benchmark for comparison to current helium-surface interaction potentials.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.