RAP1A suppresses hepatic steatosis by regulating amino acid-mediated mTORC1 activation

IF 9.5 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Heena Agarwal , Yating Wang , Brea Tinsley , Xiaobo Wang , Lale Ozcan
{"title":"RAP1A suppresses hepatic steatosis by regulating amino acid-mediated mTORC1 activation","authors":"Heena Agarwal ,&nbsp;Yating Wang ,&nbsp;Brea Tinsley ,&nbsp;Xiaobo Wang ,&nbsp;Lale Ozcan","doi":"10.1016/j.jhepr.2024.101303","DOIUrl":null,"url":null,"abstract":"<div><h3>Background &amp; Aims</h3><div>Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by triglyceride (TG) build-up in hepatocytes; however, our understanding of the underlying molecular mechanisms is limited. Here, we investigated the role of hepatic GTPase RAP1A in MASLD and its more progressive form, metabolic dysfunction-associated steatohepatitis (MASH).</div></div><div><h3>Methods</h3><div>RAP1A was silenced or activated by AAV8-TBG-mediated gene expression or treating mice with a small molecule RAP1 activator (n = 4–12 per group). Primary hepatocytes were used to further probe the newly elucidated pathway. Liver samples from patients with MASH and control livers were analyzed for active RAP1A levels (n = 4 per group).</div></div><div><h3>Results</h3><div>Activation of hepatic RAP1A is suppressed in obese mice with MASLD and restoring its activity decreases liver steatosis. RAP1A activation lowers hepatic TG accumulation through decreasing sterol regulatory element-binding protein 1 (SREBP1) cleavage by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1). The mechanism linking RAP1A activation to suppression of mTORC1 involves the lowering of membrane-bound amino acid transporters, which leads to reduced hepatocyte amino acid uptake, decreased intracellular amino acid levels, and inhibition of amino acid-mediated mTORC1 activation. Furthermore, we observed that active-RAP1A levels were decreased in mice fed a MASH-provoking diet (98% lower, <em>p</em> &lt;0.01) and liver extracts from patients with MASH (86% lower, <em>p</em> &lt;0.05). Accordingly, restoration of RAP1A activity in mice liver lowered liver fibrotic gene expression and prevented fibrosis formation, whereas RAP1A silencing promoted the progression of MASH.</div></div><div><h3>Conclusions</h3><div>Activation of hepatic RAP1A lowers MASLD and MASH formation by suppressing amino acid-mediated mTORC1 activation and decreasing cleaved SREBP1. These data provide mechanistic insight into amino acid-mediated mTORC1 regulation and raise the possibility that hepatic RAP1A may serve as a mechanistic node linking obesity with MASLD and MASH.</div></div><div><h3>Impact and implications:</h3><div>Metabolic dysfunction-associated liver pathologies are inadequately treated with currently available therapy. Here we demonstrate that the small GTPase RAS-associated protein 1A (RAP1A) protects against liver steatosis and fibrosis development by decreasing hepatocyte amino acid levels, which results in lower mTORC1 activity and SREBP1 cleavage. The results may present new targets against metabolic dysfunction related liver diseases.</div></div>","PeriodicalId":14764,"journal":{"name":"JHEP Reports","volume":"7 4","pages":"Article 101303"},"PeriodicalIF":9.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JHEP Reports","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589555924003070","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background & Aims

Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by triglyceride (TG) build-up in hepatocytes; however, our understanding of the underlying molecular mechanisms is limited. Here, we investigated the role of hepatic GTPase RAP1A in MASLD and its more progressive form, metabolic dysfunction-associated steatohepatitis (MASH).

Methods

RAP1A was silenced or activated by AAV8-TBG-mediated gene expression or treating mice with a small molecule RAP1 activator (n = 4–12 per group). Primary hepatocytes were used to further probe the newly elucidated pathway. Liver samples from patients with MASH and control livers were analyzed for active RAP1A levels (n = 4 per group).

Results

Activation of hepatic RAP1A is suppressed in obese mice with MASLD and restoring its activity decreases liver steatosis. RAP1A activation lowers hepatic TG accumulation through decreasing sterol regulatory element-binding protein 1 (SREBP1) cleavage by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1). The mechanism linking RAP1A activation to suppression of mTORC1 involves the lowering of membrane-bound amino acid transporters, which leads to reduced hepatocyte amino acid uptake, decreased intracellular amino acid levels, and inhibition of amino acid-mediated mTORC1 activation. Furthermore, we observed that active-RAP1A levels were decreased in mice fed a MASH-provoking diet (98% lower, p <0.01) and liver extracts from patients with MASH (86% lower, p <0.05). Accordingly, restoration of RAP1A activity in mice liver lowered liver fibrotic gene expression and prevented fibrosis formation, whereas RAP1A silencing promoted the progression of MASH.

Conclusions

Activation of hepatic RAP1A lowers MASLD and MASH formation by suppressing amino acid-mediated mTORC1 activation and decreasing cleaved SREBP1. These data provide mechanistic insight into amino acid-mediated mTORC1 regulation and raise the possibility that hepatic RAP1A may serve as a mechanistic node linking obesity with MASLD and MASH.

Impact and implications:

Metabolic dysfunction-associated liver pathologies are inadequately treated with currently available therapy. Here we demonstrate that the small GTPase RAS-associated protein 1A (RAP1A) protects against liver steatosis and fibrosis development by decreasing hepatocyte amino acid levels, which results in lower mTORC1 activity and SREBP1 cleavage. The results may present new targets against metabolic dysfunction related liver diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
JHEP Reports
JHEP Reports GASTROENTEROLOGY & HEPATOLOGY-
CiteScore
12.40
自引率
2.40%
发文量
161
审稿时长
36 days
期刊介绍: JHEP Reports is an open access journal that is affiliated with the European Association for the Study of the Liver (EASL). It serves as a companion journal to the highly respected Journal of Hepatology. The primary objective of JHEP Reports is to publish original papers and reviews that contribute to the advancement of knowledge in the field of liver diseases. The journal covers a wide range of topics, including basic, translational, and clinical research. It also focuses on global issues in hepatology, with particular emphasis on areas such as clinical trials, novel diagnostics, precision medicine and therapeutics, cancer research, cellular and molecular studies, artificial intelligence, microbiome research, epidemiology, and cutting-edge technologies. In summary, JHEP Reports is dedicated to promoting scientific discoveries and innovations in liver diseases through the publication of high-quality research papers and reviews covering various aspects of hepatology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信