{"title":"Plant growth-promoting effects and possible mechanisms of a plant endophytic fungus Aureobasidium sp. JRF1","authors":"Zexuan Jiang , Fangren Peng , Jinping Yu , Qi Li","doi":"10.1016/j.plaphy.2025.109724","DOIUrl":null,"url":null,"abstract":"<div><div>Endophytic fungi can establish symbiosis with host plant and promote plant growth in a sustainable way. In this study, a previously-isolated plant growth-promoting endophytic fungus JRF1 was deeply studied. JRF1 could colonize <em>Arabidopsis</em> and tomato seedlings and promote their growth. Through sequencing the internal transcribed spacer (ITS) region and <em>18S rRNA</em> gene, JRF1 was identified as an <em>Aureobasidium</em> sp. strain. Transcriptome analysis indicated that JRF1 treatment up-regulated a majority of genes related to calcium signal and genes annotated as peroxidase and glutathione S- transferase. In addition, treatment with JRF1 activated the Aux/IAA (auxin/indole acetic acid) and cytokinin signaling, while down-regulated genes involved in JA/ETH (jasmonic acid/ethylene) pathways. Split co-culture assay not only demonstrated that JRF1 significantly promoted the <em>Arabidopsis</em> growth by direct contacting the seedlings, but also suggested JRF1 could exhibit positive effects in a non-contact manner. Subsequently, metabolome analysis revealed that JRF1 produced many soluble metabolites which might be responsible for plant growth-promoting, and the releasing volatile organic compounds (VOCs) of JRF1 was also isolated and detected. Finally, we found that both cell-free supernatant (CFS) of JRF1 and its fermentation solution could outstandingly promote the plant growth, suggesting its possible role as a microbial fertilizer. Our results uncovered the interaction mode between JRF1 and host plant, proposing that the combined action of JRF1 with its metabolites resulted in the enhanced plant growth<strong>.</strong></div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"222 ","pages":"Article 109724"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825002529","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Endophytic fungi can establish symbiosis with host plant and promote plant growth in a sustainable way. In this study, a previously-isolated plant growth-promoting endophytic fungus JRF1 was deeply studied. JRF1 could colonize Arabidopsis and tomato seedlings and promote their growth. Through sequencing the internal transcribed spacer (ITS) region and 18S rRNA gene, JRF1 was identified as an Aureobasidium sp. strain. Transcriptome analysis indicated that JRF1 treatment up-regulated a majority of genes related to calcium signal and genes annotated as peroxidase and glutathione S- transferase. In addition, treatment with JRF1 activated the Aux/IAA (auxin/indole acetic acid) and cytokinin signaling, while down-regulated genes involved in JA/ETH (jasmonic acid/ethylene) pathways. Split co-culture assay not only demonstrated that JRF1 significantly promoted the Arabidopsis growth by direct contacting the seedlings, but also suggested JRF1 could exhibit positive effects in a non-contact manner. Subsequently, metabolome analysis revealed that JRF1 produced many soluble metabolites which might be responsible for plant growth-promoting, and the releasing volatile organic compounds (VOCs) of JRF1 was also isolated and detected. Finally, we found that both cell-free supernatant (CFS) of JRF1 and its fermentation solution could outstandingly promote the plant growth, suggesting its possible role as a microbial fertilizer. Our results uncovered the interaction mode between JRF1 and host plant, proposing that the combined action of JRF1 with its metabolites resulted in the enhanced plant growth.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.