Three new Microbacterium species isolated from the Marmara Sea mucilage event: Microbacterium istanbulense sp. nov., Microbacterium bandirmense sp. nov., Microbacterium marmarense sp. nov
IF 3.3 2区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Izzet Burcin Saticioglu , Nihed Ajmi , Orkid Coskuner-Weber , Semih Alpsoy , Hilal Ay , Fuat Aydin , Seçil Abay , Emre Karakaya , Tuba Kayman , Cem Dalyan , Fatih Doğan Koca , Gorkem Tasci , Doğancan Yarim , Danny Morick , Artun Yibar , Serdar Erdogan , Soner Altun , Muhammed Duman
{"title":"Three new Microbacterium species isolated from the Marmara Sea mucilage event: Microbacterium istanbulense sp. nov., Microbacterium bandirmense sp. nov., Microbacterium marmarense sp. nov","authors":"Izzet Burcin Saticioglu , Nihed Ajmi , Orkid Coskuner-Weber , Semih Alpsoy , Hilal Ay , Fuat Aydin , Seçil Abay , Emre Karakaya , Tuba Kayman , Cem Dalyan , Fatih Doğan Koca , Gorkem Tasci , Doğancan Yarim , Danny Morick , Artun Yibar , Serdar Erdogan , Soner Altun , Muhammed Duman","doi":"10.1016/j.syapm.2025.126600","DOIUrl":null,"url":null,"abstract":"<div><div>Three bacterial strains, Mu-43<sup>T</sup>, Mu-80<sup>T</sup>, and Mu-86<sup>T</sup>, were isolated from the 2021 and 2022 mucilage event in the Marmara Sea and were taxonomically characterized. 16S rRNA gene sequence analysis confirmed that these strains belong to the genus <em>Microbacterium</em>. A polyphasic approach involving genomic and phenotypic analysis was employed to determine their taxonomic positions. A polyphasic approach integrating genomic and phenotypic analyses established their taxonomic positions. <em>M. istanbulense</em> Mu-43<sup>T</sup> showed 99.0 % 16S rRNA similarity to <em>M. bandirmense</em> Mu-80<sup>T</sup>, with digital DNA–DNA hybridization (dDDH) and average nucleotide identity using BLAST (ANIb) values of 22.3 % and 78.3 %, respectively. <em>M. bandirmense</em> Mu-80<sup>T</sup> exhibited 99.2 % similarity to <em>M. esteraromaticum</em> DSM 8609<sup>T</sup>, with dDDH and ANIb values of 23.6 % and 80 %. <em>M. marmarense</em> Mu-86<sup>T</sup> showed 97.4 % similarity to <em>M. arthrosphaerae</em> JCM 30492<sup>T</sup>, with dDDH and ANIb values of 20.1 % and 74.2 %. Metagenomic analysis highlighted their ecological relevance, with relative abundances of 1.43 %, 1.15 %, and 0.95 %, respectively. Further genomic analysis identified biosynthetic gene clusters associated with secondary metabolite production, including non-ribosomal peptide synthetases and terpenoid biosynthesis pathways, suggesting potential antimicrobial activity. Additionally, antibiotic resistance genes, such as ABC efflux pumps and Erm23S_rRNA methyltransferase, indicate adaptation to environmental stress. These findings indicate that these species contribute to nutrient cycling and organic matter decomposition in mucilage-affected environments. Based on genomic and phenotypic data, these strains are proposed as novel species: <em>M. istanbulense</em> sp. nov. Mu-43<sup>T</sup> (LMG 33297<sup>T</sup> = DSM 117065<sup>T</sup>), <em>M. bandirmense</em> sp. nov. Mu-80<sup>T</sup> (LMG 33295<sup>T</sup> = DSM 117210<sup>T</sup>), and <em>M. marmarense</em> sp. nov. Mu-86<sup>T</sup> (LMG 33293<sup>T</sup> = DSM 117066<sup>T</sup>).</div></div>","PeriodicalId":22124,"journal":{"name":"Systematic and applied microbiology","volume":"48 3","pages":"Article 126600"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic and applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723202025000220","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Three bacterial strains, Mu-43T, Mu-80T, and Mu-86T, were isolated from the 2021 and 2022 mucilage event in the Marmara Sea and were taxonomically characterized. 16S rRNA gene sequence analysis confirmed that these strains belong to the genus Microbacterium. A polyphasic approach involving genomic and phenotypic analysis was employed to determine their taxonomic positions. A polyphasic approach integrating genomic and phenotypic analyses established their taxonomic positions. M. istanbulense Mu-43T showed 99.0 % 16S rRNA similarity to M. bandirmense Mu-80T, with digital DNA–DNA hybridization (dDDH) and average nucleotide identity using BLAST (ANIb) values of 22.3 % and 78.3 %, respectively. M. bandirmense Mu-80T exhibited 99.2 % similarity to M. esteraromaticum DSM 8609T, with dDDH and ANIb values of 23.6 % and 80 %. M. marmarense Mu-86T showed 97.4 % similarity to M. arthrosphaerae JCM 30492T, with dDDH and ANIb values of 20.1 % and 74.2 %. Metagenomic analysis highlighted their ecological relevance, with relative abundances of 1.43 %, 1.15 %, and 0.95 %, respectively. Further genomic analysis identified biosynthetic gene clusters associated with secondary metabolite production, including non-ribosomal peptide synthetases and terpenoid biosynthesis pathways, suggesting potential antimicrobial activity. Additionally, antibiotic resistance genes, such as ABC efflux pumps and Erm23S_rRNA methyltransferase, indicate adaptation to environmental stress. These findings indicate that these species contribute to nutrient cycling and organic matter decomposition in mucilage-affected environments. Based on genomic and phenotypic data, these strains are proposed as novel species: M. istanbulense sp. nov. Mu-43T (LMG 33297T = DSM 117065T), M. bandirmense sp. nov. Mu-80T (LMG 33295T = DSM 117210T), and M. marmarense sp. nov. Mu-86T (LMG 33293T = DSM 117066T).
期刊介绍:
Systematic and Applied Microbiology deals with various aspects of microbial diversity and systematics of prokaryotes. It focuses on Bacteria and Archaea; eukaryotic microorganisms will only be considered in rare cases. The journal perceives a broad understanding of microbial diversity and encourages the submission of manuscripts from the following branches of microbiology: