{"title":"Buckling behavior of built-up thin-walled I-beams with trapezoidal flanged cores","authors":"Michał Plust, Piotr Paczos, Piotr Kędzia","doi":"10.1016/j.engstruct.2025.120004","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the stability of thin-walled I-beams with sandwich trapezoidal flanges subjected to a three-point bending test. The flange structure consists of a channel beam flange, a trapezoidal corrugated core, and an external flat metal sheet. The stability of the I-beam was analyzed using two approaches: experimental testing and numerical analysis based on the finite element method (FEM). The experimental tests were conducted for two different methods of joining the flange layers (welding and adhesive bonding), revealing notable differences between the methods, particularly in larger displacements. Strain gauges were applied to the flange and web to measure shear stresses during the three-point test. The numerical FEM analysis determined the critical load values and buckling modes for various beam lengths, while also calculating shear stresses. Additionally, numerical studies of beams with nonsymmetric flanges showed higher critical force values compared to symmetric beams.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"331 ","pages":"Article 120004"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141029625003955","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the stability of thin-walled I-beams with sandwich trapezoidal flanges subjected to a three-point bending test. The flange structure consists of a channel beam flange, a trapezoidal corrugated core, and an external flat metal sheet. The stability of the I-beam was analyzed using two approaches: experimental testing and numerical analysis based on the finite element method (FEM). The experimental tests were conducted for two different methods of joining the flange layers (welding and adhesive bonding), revealing notable differences between the methods, particularly in larger displacements. Strain gauges were applied to the flange and web to measure shear stresses during the three-point test. The numerical FEM analysis determined the critical load values and buckling modes for various beam lengths, while also calculating shear stresses. Additionally, numerical studies of beams with nonsymmetric flanges showed higher critical force values compared to symmetric beams.
期刊介绍:
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed.
The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering.
Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels.
Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.