Comprehensive in vitro evaluation of the inhibitory effects of relatively high molecular weight peptides on drug-drug interaction-associated four liver transporters and its association with physicochemical properties

IF 2.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Rika Ishikawa , Takashi Misawa , Yosuke Demizu , Yoshiro Saito , Ruri Kikura-Hanajiri , Kosuke Saito
{"title":"Comprehensive in vitro evaluation of the inhibitory effects of relatively high molecular weight peptides on drug-drug interaction-associated four liver transporters and its association with physicochemical properties","authors":"Rika Ishikawa ,&nbsp;Takashi Misawa ,&nbsp;Yosuke Demizu ,&nbsp;Yoshiro Saito ,&nbsp;Ruri Kikura-Hanajiri ,&nbsp;Kosuke Saito","doi":"10.1016/j.dmpk.2025.101055","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, advances in peptide synthesis have enabled the construction of relatively high molecular weight (Mw; &gt;1 kDa) peptides using various types of amino acids (AAs), including proteinogenic/natural and nonnatural AAs. This advancement helps in obtaining peptides with improved stability, cell membrane permeability, and/or target-binding affinity. However, drug-drug interaction (DDI) information for these peptides remains scarce. Therefore, we focused on relatively high Mw peptides to examine their potential in inhibiting liver transporters, organic anion transporting polypeptide (OATP) 1B1, OATP1B3, P-glycoprotein, and breast cancer resistant protein (BCRP) <em>in vitro</em>. We addressed the inhibitory effects of various types of cyclic peptides containing non-natural AAs and cell-penetrating peptides composed of proteinogenic/natural AAs. Our results demonstrated that several peptides inhibited transport activities, indicating that they can potentially cause DDI. We further evaluated the relationship between their inhibition potency and physicochemical properties (Mw and hydrophobicity or charge of the constituting AA) to characterize the specific physicochemical properties contributing to their inhibition potency. The hydrophobic AA contents of the peptides correlated with the inhibition potencies for all four transporters. Our findings demonstrate the transporter-mediated DDI potential of peptides and the necessity of their evaluation for drug development.</div></div>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"61 ","pages":"Article 101055"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347436725000059","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, advances in peptide synthesis have enabled the construction of relatively high molecular weight (Mw; >1 kDa) peptides using various types of amino acids (AAs), including proteinogenic/natural and nonnatural AAs. This advancement helps in obtaining peptides with improved stability, cell membrane permeability, and/or target-binding affinity. However, drug-drug interaction (DDI) information for these peptides remains scarce. Therefore, we focused on relatively high Mw peptides to examine their potential in inhibiting liver transporters, organic anion transporting polypeptide (OATP) 1B1, OATP1B3, P-glycoprotein, and breast cancer resistant protein (BCRP) in vitro. We addressed the inhibitory effects of various types of cyclic peptides containing non-natural AAs and cell-penetrating peptides composed of proteinogenic/natural AAs. Our results demonstrated that several peptides inhibited transport activities, indicating that they can potentially cause DDI. We further evaluated the relationship between their inhibition potency and physicochemical properties (Mw and hydrophobicity or charge of the constituting AA) to characterize the specific physicochemical properties contributing to their inhibition potency. The hydrophobic AA contents of the peptides correlated with the inhibition potencies for all four transporters. Our findings demonstrate the transporter-mediated DDI potential of peptides and the necessity of their evaluation for drug development.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
9.50%
发文量
50
审稿时长
69 days
期刊介绍: DMPK publishes original and innovative scientific papers that address topics broadly related to xenobiotics. The term xenobiotic includes medicinal as well as environmental and agricultural chemicals and macromolecules. The journal is organized into sections as follows: - Drug metabolism / Biotransformation - Pharmacokinetics and pharmacodynamics - Toxicokinetics and toxicodynamics - Drug-drug interaction / Drug-food interaction - Mechanism of drug absorption and disposition (including transporter) - Drug delivery system - Clinical pharmacy and pharmacology - Analytical method - Factors affecting drug metabolism and transport - Expression of genes for drug-metabolizing enzymes and transporters - Pharmacogenetics and pharmacogenomics - Pharmacoepidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信