Molecular antiviral responses, immune priming and inheritance in insects

IF 2.8 3区 医学 Q3 VIROLOGY
Everardo Gutiérrez-Millán, Eduardo Daniel Rodríguez-Aguilar, Mario Henry Rodríguez
{"title":"Molecular antiviral responses, immune priming and inheritance in insects","authors":"Everardo Gutiérrez-Millán,&nbsp;Eduardo Daniel Rodríguez-Aguilar,&nbsp;Mario Henry Rodríguez","doi":"10.1016/j.virol.2025.110468","DOIUrl":null,"url":null,"abstract":"<div><div>Viral diseases transmitted by insects to plants cause severe agricultural damage and arboviruses transmitted to humans cause severe disease outbreaks. The interaction between viruses and the insect defences is complex and has evolved into acting-counteracting molecular interplays. Viruses depict complex molecular mechanisms to ensure invasion, replication and exit the insect host cell, to invade other cells. On the other hand, insect cells use molecular strategies to recognize, halt replication and eliminate the invaders. In turn, virus counteract with evasive strategies. The main antiviral defence mechanism RNA interference (RNAi) recognizes and degrades viral RNA, thereby inhibiting viral replication. These in conjunction with other canonical immune pathways, Toll, IMD, JAK/STAT and Akt-ERK developed mainly to combat bacteria, fungi and protozoa, along with mechanisms to eliminate infected cells like apoptosis and phagocytosis comprise a multifactorial system. Insects exposed to an attenuated or sublethal viral infection could respond with faster and enhanced immune responses to the same pathogen (priming), which is like immunological memory in vertebrates. Several mechanisms have been proposed to explain priming, including endoreplication, epigenetic gene modifications by DNA methylation and histone acetylation. Priming could be inherited by the offspring (transgenerational immune priming, TGIP). However, the precise molecular mechanisms underlying TGIP remain to be elucidated. This article reviews the molecular mechanisms employed by insects to combat viral infections, discusses the current information and the outstanding research questions in the area.</div></div>","PeriodicalId":23666,"journal":{"name":"Virology","volume":"605 ","pages":"Article 110468"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042682225000807","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Viral diseases transmitted by insects to plants cause severe agricultural damage and arboviruses transmitted to humans cause severe disease outbreaks. The interaction between viruses and the insect defences is complex and has evolved into acting-counteracting molecular interplays. Viruses depict complex molecular mechanisms to ensure invasion, replication and exit the insect host cell, to invade other cells. On the other hand, insect cells use molecular strategies to recognize, halt replication and eliminate the invaders. In turn, virus counteract with evasive strategies. The main antiviral defence mechanism RNA interference (RNAi) recognizes and degrades viral RNA, thereby inhibiting viral replication. These in conjunction with other canonical immune pathways, Toll, IMD, JAK/STAT and Akt-ERK developed mainly to combat bacteria, fungi and protozoa, along with mechanisms to eliminate infected cells like apoptosis and phagocytosis comprise a multifactorial system. Insects exposed to an attenuated or sublethal viral infection could respond with faster and enhanced immune responses to the same pathogen (priming), which is like immunological memory in vertebrates. Several mechanisms have been proposed to explain priming, including endoreplication, epigenetic gene modifications by DNA methylation and histone acetylation. Priming could be inherited by the offspring (transgenerational immune priming, TGIP). However, the precise molecular mechanisms underlying TGIP remain to be elucidated. This article reviews the molecular mechanisms employed by insects to combat viral infections, discusses the current information and the outstanding research questions in the area.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virology
Virology 医学-病毒学
CiteScore
6.00
自引率
0.00%
发文量
157
审稿时长
50 days
期刊介绍: Launched in 1955, Virology is a broad and inclusive journal that welcomes submissions on all aspects of virology including plant, animal, microbial and human viruses. The journal publishes basic research as well as pre-clinical and clinical studies of vaccines, anti-viral drugs and their development, anti-viral therapies, and computational studies of virus infections. Any submission that is of broad interest to the community of virologists/vaccinologists and reporting scientifically accurate and valuable research will be considered for publication, including negative findings and multidisciplinary work.Virology is open to reviews, research manuscripts, short communication, registered reports as well as follow-up manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信