Particle tuning in reactive crystallization via microwave-assisted temperature cycling for improved downstream performance

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS
Athanasios Arampatzis , Ioannis Papaioannou , Tom Van Gerven , Georgios D. Stefanidis
{"title":"Particle tuning in reactive crystallization via microwave-assisted temperature cycling for improved downstream performance","authors":"Athanasios Arampatzis ,&nbsp;Ioannis Papaioannou ,&nbsp;Tom Van Gerven ,&nbsp;Georgios D. Stefanidis","doi":"10.1016/j.cep.2025.110241","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient particle processing during and downstream of a crystallization process is a paramount task in pharmaceutical industry regarding production of Active Pharmaceutical Ingredients (APIs). Due to mass transfer limitations, supersaturation is often not uniformly controlled in reactive crystallization processes generating an excessive amount of fine particles, which often tend to agglomerate causing issues in downstream operations, such as filtration and drying. We demonstrate rapid microwave-assisted temperature cycling (RMWTC) as a post-treatment approach that can effectively address these problems. Specifically, we report that in the event of high solids load systems, RMWTC intensifies fines dissolution during rapid heating and promotes faster recrystallization on surviving surfaces during rapid cooling. The RMWTC approach facilitates tuning not only of particle size, but possibly of crystal morphology by increasing the number of stable agglomerates with a positive concomitant impact on particle filterability and process time. A thermal parametric study on an aromatic amine API intermediate system revealed that there is an optimal temperature operating window (60 °C-105 °C) that shifts particle size distribution (PSD) towards larger particle sizes and yields up to 82 % improved filterability at 50 % less process time compared to the traditional particle control strategy, currently applied in industry for this process.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"211 ","pages":"Article 110241"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025527012500090X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient particle processing during and downstream of a crystallization process is a paramount task in pharmaceutical industry regarding production of Active Pharmaceutical Ingredients (APIs). Due to mass transfer limitations, supersaturation is often not uniformly controlled in reactive crystallization processes generating an excessive amount of fine particles, which often tend to agglomerate causing issues in downstream operations, such as filtration and drying. We demonstrate rapid microwave-assisted temperature cycling (RMWTC) as a post-treatment approach that can effectively address these problems. Specifically, we report that in the event of high solids load systems, RMWTC intensifies fines dissolution during rapid heating and promotes faster recrystallization on surviving surfaces during rapid cooling. The RMWTC approach facilitates tuning not only of particle size, but possibly of crystal morphology by increasing the number of stable agglomerates with a positive concomitant impact on particle filterability and process time. A thermal parametric study on an aromatic amine API intermediate system revealed that there is an optimal temperature operating window (60 °C-105 °C) that shifts particle size distribution (PSD) towards larger particle sizes and yields up to 82 % improved filterability at 50 % less process time compared to the traditional particle control strategy, currently applied in industry for this process.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信