Unveiling the role of substrate properties in shaping film formation in crosslinked waterborne coatings

IF 5.7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Abolfazl Arjmandi , Huichao Bi , Stefan Urth Nielsen , Kim Dam-Johansen
{"title":"Unveiling the role of substrate properties in shaping film formation in crosslinked waterborne coatings","authors":"Abolfazl Arjmandi ,&nbsp;Huichao Bi ,&nbsp;Stefan Urth Nielsen ,&nbsp;Kim Dam-Johansen","doi":"10.1016/j.surfin.2025.106150","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the influence of substrate properties on the film formation mechanism of waterborne (WB) anti-corrosive coatings, a sustainable alternative to solvent-based coatings. While the environmental benefits of WB coatings, such as reduced VOC emissions and improved workplace safety, are well recognized, their performance on real-world substrates has been underexplored. This research addresses how substrate characteristics, including roughness, hydrophilicity, and water absorption, affect the water-loss profile during the coating process and, consequently, the film formation behavior and final properties of the cured coating. A combination of gravimetry and Fourier Transform Infrared Spectroscopy (FTIR) was employed to monitor water-loss profiles both independently and comparatively. Cryo-Scanning Electron Microscopy (Cryo-SEM) of forming films captured at distinct stages of water loss (<em>t</em> = 0, end of stage I, II, and III) revealed the morphological evolution of the coating. Furthermore, rheological analyses were performed to assess the drying and curing behavior on different substrates. These findings provide valuable insights into the substrate-dependent behavior of WB coatings, emphasizing their potential and limitations for industrial applications. By understanding the critical role of substrates, this work advances the development of more robust WB anti-corrosive coatings for diverse environmental conditions and substrate types.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"61 ","pages":"Article 106150"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023025004092","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the influence of substrate properties on the film formation mechanism of waterborne (WB) anti-corrosive coatings, a sustainable alternative to solvent-based coatings. While the environmental benefits of WB coatings, such as reduced VOC emissions and improved workplace safety, are well recognized, their performance on real-world substrates has been underexplored. This research addresses how substrate characteristics, including roughness, hydrophilicity, and water absorption, affect the water-loss profile during the coating process and, consequently, the film formation behavior and final properties of the cured coating. A combination of gravimetry and Fourier Transform Infrared Spectroscopy (FTIR) was employed to monitor water-loss profiles both independently and comparatively. Cryo-Scanning Electron Microscopy (Cryo-SEM) of forming films captured at distinct stages of water loss (t = 0, end of stage I, II, and III) revealed the morphological evolution of the coating. Furthermore, rheological analyses were performed to assess the drying and curing behavior on different substrates. These findings provide valuable insights into the substrate-dependent behavior of WB coatings, emphasizing their potential and limitations for industrial applications. By understanding the critical role of substrates, this work advances the development of more robust WB anti-corrosive coatings for diverse environmental conditions and substrate types.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信