Lan Huang , Jia Zeng , Mengqiang Yu , Weiping Ding , Xingyu Bai , Kangping Wang
{"title":"Efficient feature selection for pre-trained vision transformers","authors":"Lan Huang , Jia Zeng , Mengqiang Yu , Weiping Ding , Xingyu Bai , Kangping Wang","doi":"10.1016/j.cviu.2025.104326","DOIUrl":null,"url":null,"abstract":"<div><div>Handcrafted layer-wise vision transformers have demonstrated remarkable performance in image classification. However, their high computational cost limits their practical applications. In this paper, we first identify and highlight the data-independent feature redundancy in pre-trained Vision Transformer (ViT) models. Based on this observation, we explore the feasibility of searching for the best substructure within the original pre-trained model. To this end, we propose EffiSelecViT, a novel pruning method aimed at reducing the computational cost of ViTs while preserving their accuracy. EffiSelecViT introduces importance scores for both self-attention heads and Multi-Layer Perceptron (MLP) neurons in pre-trained ViT models. L1 regularization is applied to constrain and learn these scores. In this simple way, components that are crucial for model performance are assigned higher scores, while those with lower scores are identified as less important and subsequently pruned. Experimental results demonstrate that EffiSelecViT can prune DeiT-B to retain only 64% of FLOPs while maintaining accuracy. This efficiency-accuracy trade-off is consistent across various ViT architectures. Furthermore, qualitative analysis reveals enhanced information expression in the pruned models, affirming the effectiveness and practicality of EffiSelecViT. The code is available at <span><span>https://github.com/ZJ6789/EffiSelecViT</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"254 ","pages":"Article 104326"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314225000499","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Handcrafted layer-wise vision transformers have demonstrated remarkable performance in image classification. However, their high computational cost limits their practical applications. In this paper, we first identify and highlight the data-independent feature redundancy in pre-trained Vision Transformer (ViT) models. Based on this observation, we explore the feasibility of searching for the best substructure within the original pre-trained model. To this end, we propose EffiSelecViT, a novel pruning method aimed at reducing the computational cost of ViTs while preserving their accuracy. EffiSelecViT introduces importance scores for both self-attention heads and Multi-Layer Perceptron (MLP) neurons in pre-trained ViT models. L1 regularization is applied to constrain and learn these scores. In this simple way, components that are crucial for model performance are assigned higher scores, while those with lower scores are identified as less important and subsequently pruned. Experimental results demonstrate that EffiSelecViT can prune DeiT-B to retain only 64% of FLOPs while maintaining accuracy. This efficiency-accuracy trade-off is consistent across various ViT architectures. Furthermore, qualitative analysis reveals enhanced information expression in the pruned models, affirming the effectiveness and practicality of EffiSelecViT. The code is available at https://github.com/ZJ6789/EffiSelecViT.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems