Fatigue life of elbow pipe for in-plane loading (Part II: carbon steel)

IF 3 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Masayuki Kamaya
{"title":"Fatigue life of elbow pipe for in-plane loading (Part II: carbon steel)","authors":"Masayuki Kamaya","doi":"10.1016/j.ijpvp.2025.105491","DOIUrl":null,"url":null,"abstract":"<div><div>It has been pointed out that the fatigue life of elbow pipes made of carbon steel subjected to cyclic in-plane bending was shorter than that predicted for uniaxial cyclic loading. This study aimed to investigate the fatigue life of elbow pipes and to quantify the reduction in fatigue life for component design. The fatigue test was conducted at room temperature using eight elbow specimens made of carbon steel. To suppress the ratcheting strain, only slight internal pressure was applied to detect crack penetration. Uniaxial and plate bending fatigue tests were also conducted using specimens taken from an elbow pipe of the same heat. The equivalent strain range at the crack initiation point, which was the inner surface of the crown, was successfully estimated from the measured strain using finite element analysis results. It was shown that the fatigue life obtained by the elbow test was shorter than that obtained by the axial and plate bending fatigue tests for the same equivalent strain range, and the reduction in fatigue life became more significant as the strain range increased. It was deduced that the ratcheting strain was not a major factor that caused the fatigue life reduction of elbow pipes. Then, the degree of the fatigue life reduction of the elbow specimens was quantified. The ratio of the fatigue life of the elbow specimen to that for uniaxial fatigue loading did not exceed 4 when the fatigue life of the elbow pipe was more than 120 cycles.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"216 ","pages":"Article 105491"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016125000614","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

It has been pointed out that the fatigue life of elbow pipes made of carbon steel subjected to cyclic in-plane bending was shorter than that predicted for uniaxial cyclic loading. This study aimed to investigate the fatigue life of elbow pipes and to quantify the reduction in fatigue life for component design. The fatigue test was conducted at room temperature using eight elbow specimens made of carbon steel. To suppress the ratcheting strain, only slight internal pressure was applied to detect crack penetration. Uniaxial and plate bending fatigue tests were also conducted using specimens taken from an elbow pipe of the same heat. The equivalent strain range at the crack initiation point, which was the inner surface of the crown, was successfully estimated from the measured strain using finite element analysis results. It was shown that the fatigue life obtained by the elbow test was shorter than that obtained by the axial and plate bending fatigue tests for the same equivalent strain range, and the reduction in fatigue life became more significant as the strain range increased. It was deduced that the ratcheting strain was not a major factor that caused the fatigue life reduction of elbow pipes. Then, the degree of the fatigue life reduction of the elbow specimens was quantified. The ratio of the fatigue life of the elbow specimen to that for uniaxial fatigue loading did not exceed 4 when the fatigue life of the elbow pipe was more than 120 cycles.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
13.30%
发文量
208
审稿时长
17 months
期刊介绍: Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants. The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome: • Pressure vessel engineering • Structural integrity assessment • Design methods • Codes and standards • Fabrication and welding • Materials properties requirements • Inspection and quality management • Maintenance and life extension • Ageing and environmental effects • Life management Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time. International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信