Fernanda Vieira da Silva Cruz , Philippe Venne , Pedro Segura , Philippe Juneau
{"title":"Effect of temperature on the physiology and phytoremediation capacity of Spirodela polyrhiza exposed to atrazine and S-metolachlor","authors":"Fernanda Vieira da Silva Cruz , Philippe Venne , Pedro Segura , Philippe Juneau","doi":"10.1016/j.aquatox.2025.107304","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental toxicity of pesticides to aquatic plants can vary with temperature, as temperature affects plant metabolic processes. We exposed the globally distributed duckweed <em>Spirodela polyrhiza</em> to environmentally relevant concentrations (40 µg/L) of atrazine and <em>S</em>-metolachlor at temperatures typical of surface freshwater in temperate zones (10, 15, and 21 °C). Our objective was to assess the effects of low temperatures and herbicide concentration, and their interactions, on growth, photosynthesis, pigments, antioxidant enzymes, and phytoremediation capacity. Lower temperatures (10 °C) intensified the adverse effects of both herbicides on the quantum yield of photosystem II in <em>S. polyrhiza</em>, with photosynthesis being a more sensitive endpoint than biomass growth rate. Both in the control and herbicide treatments, plants exposed to 10 °C exhibited lower concentrations of photosynthetic pigments (chlorophylls and carotenoids) and reduced ascorbate peroxidase activity, which may have contributed to the intensified negative effects on photosynthesis at this temperature. The removal of <em>S</em>-metolachlor was lower at 10 and 15 °C (3–8 %) compared to 21 °C (17 %), while no difference was observed between the three tested temperatures for atrazine (2–8 %). Our findings suggest that conducting pesticide toxicity tests at around 25 °C may underestimate the contaminants' inhibitory effects on aquatic plants during colder seasons and in temperate regions. Additionally, lower temperatures pose a challenge to the effectiveness of atrazine and <em>S</em>-metolachlor phytoremediation in aquatic environments.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"282 ","pages":"Article 107304"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25000694","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental toxicity of pesticides to aquatic plants can vary with temperature, as temperature affects plant metabolic processes. We exposed the globally distributed duckweed Spirodela polyrhiza to environmentally relevant concentrations (40 µg/L) of atrazine and S-metolachlor at temperatures typical of surface freshwater in temperate zones (10, 15, and 21 °C). Our objective was to assess the effects of low temperatures and herbicide concentration, and their interactions, on growth, photosynthesis, pigments, antioxidant enzymes, and phytoremediation capacity. Lower temperatures (10 °C) intensified the adverse effects of both herbicides on the quantum yield of photosystem II in S. polyrhiza, with photosynthesis being a more sensitive endpoint than biomass growth rate. Both in the control and herbicide treatments, plants exposed to 10 °C exhibited lower concentrations of photosynthetic pigments (chlorophylls and carotenoids) and reduced ascorbate peroxidase activity, which may have contributed to the intensified negative effects on photosynthesis at this temperature. The removal of S-metolachlor was lower at 10 and 15 °C (3–8 %) compared to 21 °C (17 %), while no difference was observed between the three tested temperatures for atrazine (2–8 %). Our findings suggest that conducting pesticide toxicity tests at around 25 °C may underestimate the contaminants' inhibitory effects on aquatic plants during colder seasons and in temperate regions. Additionally, lower temperatures pose a challenge to the effectiveness of atrazine and S-metolachlor phytoremediation in aquatic environments.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.