Digital Twin Enabling Technologies for Advancing Road Engineering and Lifecycle Applications

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Yu Yan , Lei Ni , Lijun Sun , Ying Wang , Jianing Zhou
{"title":"Digital Twin Enabling Technologies for Advancing Road Engineering and Lifecycle Applications","authors":"Yu Yan ,&nbsp;Lei Ni ,&nbsp;Lijun Sun ,&nbsp;Ying Wang ,&nbsp;Jianing Zhou","doi":"10.1016/j.eng.2024.12.017","DOIUrl":null,"url":null,"abstract":"<div><div>Road infrastructure is facing significant digitalization challenges within the context of new infrastructure construction in China and worldwide. Among the advanced digital technologies, digital twin (DT) has gained prominence across various engineering sectors, including the manufacturing and construction industries. Specifically, road engineering has demonstrated a growing interest in DT and has achieved promising results in DT-related applications over the past several years. This paper systematically introduces the development of DT and examines its current state in road engineering by reviewing research articles on DT-enabling technologies, such as model creation, condition sensing, data processing, and interaction, as well as its applications throughout the lifecycle of road infrastructure. The findings indicate that research has primarily focused on data perception and virtual model creation, while real-time data processing and interaction between physical and virtual models remain underexplored. DT in road engineering has been predominantly applied during the operation and maintenance phases, with limited attention given to the construction and demolition phases. Future efforts should focus on establishing uniform standards, developing innovative perception and data interaction techniques, optimizing development costs, and expanding the scope of lifecycle applications to facilitate the digital transformation of road engineering. This review provides a comprehensive overview of state-of-the-art advancements in this field and paves the way for leveraging DT in road infrastructure lifecycle management.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"44 ","pages":"Pages 184-206"},"PeriodicalIF":10.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924007343","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Road infrastructure is facing significant digitalization challenges within the context of new infrastructure construction in China and worldwide. Among the advanced digital technologies, digital twin (DT) has gained prominence across various engineering sectors, including the manufacturing and construction industries. Specifically, road engineering has demonstrated a growing interest in DT and has achieved promising results in DT-related applications over the past several years. This paper systematically introduces the development of DT and examines its current state in road engineering by reviewing research articles on DT-enabling technologies, such as model creation, condition sensing, data processing, and interaction, as well as its applications throughout the lifecycle of road infrastructure. The findings indicate that research has primarily focused on data perception and virtual model creation, while real-time data processing and interaction between physical and virtual models remain underexplored. DT in road engineering has been predominantly applied during the operation and maintenance phases, with limited attention given to the construction and demolition phases. Future efforts should focus on establishing uniform standards, developing innovative perception and data interaction techniques, optimizing development costs, and expanding the scope of lifecycle applications to facilitate the digital transformation of road engineering. This review provides a comprehensive overview of state-of-the-art advancements in this field and paves the way for leveraging DT in road infrastructure lifecycle management.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信