Chao Yang , Guang-Wen Chu , Xin Feng , Yan-Bin Li , Jie Chen , Dan Wang , Xiaoxia Duan , Jian-Feng Chen
{"title":"Mixing Intensification for Advanced Materials Manufacturing","authors":"Chao Yang , Guang-Wen Chu , Xin Feng , Yan-Bin Li , Jie Chen , Dan Wang , Xiaoxia Duan , Jian-Feng Chen","doi":"10.1016/j.eng.2024.12.019","DOIUrl":null,"url":null,"abstract":"<div><div>The mixing process plays a pivotal role in the design, optimization, and scale-up of chemical reactors. For most chemical reactions, achieving uniform and rapid contact between reactants at the molecular level is crucial. Mixing intensification encompasses innovative methods and tools that address the limitations of inadequate mixing within reactors, enabling efficient reaction scaling and boosting the productivity of industrial processes. This review provides a concise introduction to the fundamentals of multiphase mixing, followed by case studies highlighting the application of mixing intensification in the production of energy-storage materials, advanced optical materials, and nanopesticides. These examples illustrate the significance of theoretical analysis in informing and advancing engineering practices within the chemical industry. We also explore the challenges and opportunities in this field, offering insights based on our current understanding.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"44 ","pages":"Pages 135-144"},"PeriodicalIF":10.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924007367","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The mixing process plays a pivotal role in the design, optimization, and scale-up of chemical reactors. For most chemical reactions, achieving uniform and rapid contact between reactants at the molecular level is crucial. Mixing intensification encompasses innovative methods and tools that address the limitations of inadequate mixing within reactors, enabling efficient reaction scaling and boosting the productivity of industrial processes. This review provides a concise introduction to the fundamentals of multiphase mixing, followed by case studies highlighting the application of mixing intensification in the production of energy-storage materials, advanced optical materials, and nanopesticides. These examples illustrate the significance of theoretical analysis in informing and advancing engineering practices within the chemical industry. We also explore the challenges and opportunities in this field, offering insights based on our current understanding.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.