Ziyuyang Zheng , Lu Wang , Yuan Dong , Keji Yue , Renquan Wang , Chang Liu , Ying Liu
{"title":"The wear behavior of (Ti, W, Mo, Cr) (C, N)-based cermet under a wide load range","authors":"Ziyuyang Zheng , Lu Wang , Yuan Dong , Keji Yue , Renquan Wang , Chang Liu , Ying Liu","doi":"10.1016/j.ijrmhm.2025.107122","DOIUrl":null,"url":null,"abstract":"<div><div>The solid solution carbonitride -based cermet such as (Ti, M)(C, N)-based cermet (M represents transition metals) with low mismatch interfaces, hold significant potential to application in molds, cutting tools, and other wear-resistant parts. However, their wear behavior and mechanisms under reciprocating sliding contact and wide load range remain unclear. Herein, we investigate the unlubricated tribological behavior and wear mechanisms of (Ti, W, Mo, Cr)(C, N)-based cermet at a wide load range from 5 N to 100 N. Under low load, (Ti, M)(C, N)-based cermet exhibits excellent wear resistance compared to traditional Ti(C, N)-based cermet. The low friction coefficient and wear rate are attributed to the synergistic effects of transition metal oxides, particularly the self-lubricating properties of molybdenum trioxide (MoO<sub>3</sub>). Under high loads, the wear mechanism changes from the formation and failure of oxide layers, to accelerated abrasive wear and subsequently to an extremely slow wear caused by the Al-rich adhesive layer generated from elemental transformation between the tribo-couples. Furthermore, the strong interfacial bonding helps prevent crack growth between the core and rim phases. This study provides a theoretical basis and guidance for further improving the wear resistance of (Ti, M)(C, N)-based cermets and expending their potential application domains.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"129 ","pages":"Article 107122"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825000873","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The solid solution carbonitride -based cermet such as (Ti, M)(C, N)-based cermet (M represents transition metals) with low mismatch interfaces, hold significant potential to application in molds, cutting tools, and other wear-resistant parts. However, their wear behavior and mechanisms under reciprocating sliding contact and wide load range remain unclear. Herein, we investigate the unlubricated tribological behavior and wear mechanisms of (Ti, W, Mo, Cr)(C, N)-based cermet at a wide load range from 5 N to 100 N. Under low load, (Ti, M)(C, N)-based cermet exhibits excellent wear resistance compared to traditional Ti(C, N)-based cermet. The low friction coefficient and wear rate are attributed to the synergistic effects of transition metal oxides, particularly the self-lubricating properties of molybdenum trioxide (MoO3). Under high loads, the wear mechanism changes from the formation and failure of oxide layers, to accelerated abrasive wear and subsequently to an extremely slow wear caused by the Al-rich adhesive layer generated from elemental transformation between the tribo-couples. Furthermore, the strong interfacial bonding helps prevent crack growth between the core and rim phases. This study provides a theoretical basis and guidance for further improving the wear resistance of (Ti, M)(C, N)-based cermets and expending their potential application domains.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.