Recent development in surface/interface friction of two-dimensional black phosphorus: A review

IF 15.9 1区 化学 Q1 CHEMISTRY, PHYSICAL
Qiang Li, Wei Li
{"title":"Recent development in surface/interface friction of two-dimensional black phosphorus: A review","authors":"Qiang Li,&nbsp;Wei Li","doi":"10.1016/j.cis.2025.103464","DOIUrl":null,"url":null,"abstract":"<div><div>In 2014, with the development of synthesis and modification methods of black phosphorus (BP), single or multiple layers of BP were stripped into two-dimensional (2D) layered materials, which had great prospects in transistors, batteries, optoelectronics, friction, and lubrication fields. From this point of view, we highlight recent advances in BP research, particularly its tribology and lubrication properties. This paper introduces mainly the research progress of BP in the solid-liquid lubrication fields, and systematically expounds its friction nature from the perspective of macroscopic, microscopic, and computational tribology. Under special conditions (high load, oxidation, etc.), a long-term superlubricity performance of BP could be obtained, which far exceeded other traditional 2D lubrication materials (Gr, MoS<sub>2</sub>, etc.). There were obvious deficiencies and misunderstandings about the macroscopic and microscopic superlubricity mechanism of BP lubricant, due to the complex and diversified frictional interfaces. The superlubricity mechanism of BP was roughly attributed to the multi-factor coupling or synergistic action in macroscopic, and it was still an open question whether there was secondary transition or contact area difference of the friction interface in microscopic. We believe that these deficiencies and misunderstandings are more ascribed to the lack of research on the interface transition behavior and mechanism during BP friction. We analyze and summarize the challenges and limitations in understanding BP's superlubricity mechanism based on macroscopic and microscopic experiments in the current BP friction research. Finally, we propose a computational tribology-based approach to reconcile discrepancies between macro- and micro-scale experiments.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"340 ","pages":"Article 103464"},"PeriodicalIF":15.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625000752","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In 2014, with the development of synthesis and modification methods of black phosphorus (BP), single or multiple layers of BP were stripped into two-dimensional (2D) layered materials, which had great prospects in transistors, batteries, optoelectronics, friction, and lubrication fields. From this point of view, we highlight recent advances in BP research, particularly its tribology and lubrication properties. This paper introduces mainly the research progress of BP in the solid-liquid lubrication fields, and systematically expounds its friction nature from the perspective of macroscopic, microscopic, and computational tribology. Under special conditions (high load, oxidation, etc.), a long-term superlubricity performance of BP could be obtained, which far exceeded other traditional 2D lubrication materials (Gr, MoS2, etc.). There were obvious deficiencies and misunderstandings about the macroscopic and microscopic superlubricity mechanism of BP lubricant, due to the complex and diversified frictional interfaces. The superlubricity mechanism of BP was roughly attributed to the multi-factor coupling or synergistic action in macroscopic, and it was still an open question whether there was secondary transition or contact area difference of the friction interface in microscopic. We believe that these deficiencies and misunderstandings are more ascribed to the lack of research on the interface transition behavior and mechanism during BP friction. We analyze and summarize the challenges and limitations in understanding BP's superlubricity mechanism based on macroscopic and microscopic experiments in the current BP friction research. Finally, we propose a computational tribology-based approach to reconcile discrepancies between macro- and micro-scale experiments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.50
自引率
2.60%
发文量
175
审稿时长
31 days
期刊介绍: "Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology. The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas. Typically, the articles published in this journal are written by recognized experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信