Synthesis, structural characterization, and catalytic performance of Pd(II) complexes with fluorine- and methyl-substituted Schiff bases: Experimental and theoretical insights
Nur Husnina Nasaruddin , Shahrul Nizam Ahmad , Amalina Mohd Tajuddin , Nova Pratiwi Indriyani , Aditya Wibawa Sakti , Yessi Permana , Nor Mas Mira Abd Rahman , Nor Saadah Mohd Yusof , Hadariah Bahron
{"title":"Synthesis, structural characterization, and catalytic performance of Pd(II) complexes with fluorine- and methyl-substituted Schiff bases: Experimental and theoretical insights","authors":"Nur Husnina Nasaruddin , Shahrul Nizam Ahmad , Amalina Mohd Tajuddin , Nova Pratiwi Indriyani , Aditya Wibawa Sakti , Yessi Permana , Nor Mas Mira Abd Rahman , Nor Saadah Mohd Yusof , Hadariah Bahron","doi":"10.1016/j.inoche.2025.114186","DOIUrl":null,"url":null,"abstract":"<div><div>Two <em>meta</em>-substituted Schiff bases were synthesized and characterized using physicochemical and spectroscopic analysis. These Schiff bases were complexed with palladium(II) to form [Pd(AD1F)] and [Pd(AD1Me)], both characterized through single-crystal X-ray diffraction, elemental analysis, molar conductivity, FTIR, <sup>1</sup>H NMR, and UV–Vis spectroscopy. Pd(AD1F) crystallized in a monoclinic system (P21/c space group), with the phenolic oxygen and azomethine nitrogen chelating Pd(II) to form a distorted square planar geometry. The formation of the Pd(II) complexes was observed through the shifting of ν(C = N) peak and δ(HC = N) in IR and <sup>1</sup>H NMR spectra, respectively. Additionally, the shift of the n–π*(C = N) band in UV–Vis spectra corroborated the involvement of azomethine nitrogen in the complexation. Pd(AD1Me) has been previously reported in our earlier work. DFT calculations revealed similar electronic transitions at 259 nm (π → π*) and 333 nm (n → π*), dominated by specific HOMO to LUMO transitions for [Pd(AD1Me)] and [Pd(AD1F)] with minor effects from substituents. [Pd(AD1F)] demonstrated catalytic activity in copper-free Sonogashira coupling, achieving a TOF of 2.4 h<sup>−1</sup> and a TON of 7.1 at 120 °C. Its higher ionization potential and lower electron affinity, as determined by DFT, support its superior catalytic performance compared to [Pd(AD1Me)].</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"176 ","pages":"Article 114186"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700325003004","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Two meta-substituted Schiff bases were synthesized and characterized using physicochemical and spectroscopic analysis. These Schiff bases were complexed with palladium(II) to form [Pd(AD1F)] and [Pd(AD1Me)], both characterized through single-crystal X-ray diffraction, elemental analysis, molar conductivity, FTIR, 1H NMR, and UV–Vis spectroscopy. Pd(AD1F) crystallized in a monoclinic system (P21/c space group), with the phenolic oxygen and azomethine nitrogen chelating Pd(II) to form a distorted square planar geometry. The formation of the Pd(II) complexes was observed through the shifting of ν(C = N) peak and δ(HC = N) in IR and 1H NMR spectra, respectively. Additionally, the shift of the n–π*(C = N) band in UV–Vis spectra corroborated the involvement of azomethine nitrogen in the complexation. Pd(AD1Me) has been previously reported in our earlier work. DFT calculations revealed similar electronic transitions at 259 nm (π → π*) and 333 nm (n → π*), dominated by specific HOMO to LUMO transitions for [Pd(AD1Me)] and [Pd(AD1F)] with minor effects from substituents. [Pd(AD1F)] demonstrated catalytic activity in copper-free Sonogashira coupling, achieving a TOF of 2.4 h−1 and a TON of 7.1 at 120 °C. Its higher ionization potential and lower electron affinity, as determined by DFT, support its superior catalytic performance compared to [Pd(AD1Me)].
期刊介绍:
Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.