{"title":"Laser-induced graphene electrodes obtained by direct laser writing for pharmaceutical and biomedical analysis","authors":"Amal Rabti , Sabrine Baachaoui , Mohamed Zouari , Noureddine Raouafi","doi":"10.1016/j.jpbao.2025.100069","DOIUrl":null,"url":null,"abstract":"<div><div>Laser-induced graphene (LIG), also referred to as laser-ablated graphene (LAG), laser-scribed graphene (LSG), laser-produced graphene (LPG), laser-engineered graphene (LEG), and laser-derived graphene (LDG), has emerged as a versatile material for the development of high-performance electrodes that exhibit unique properties, such as high electrical conductivity, large surface area, chemical stability, and ease of functionalization. These characteristics render LIG electrodes particularly suitable for pharmaceutical and biomedical applications where rapid, sensitive, and reliable analytical methods are required. This review presents a comprehensive overview of recent advancements in the utilization of graphene electrodes for pharmaceutical and biomedical applications. They encompass their fabrication processes, surface modifications with nanomaterials and biomolecules, and the principal analytical techniques employed, including electrochemical sensing, biosensing, and drug monitoring. Particular emphasis is placed on the integration of LIG electrodes into point-of-care devices for clinical diagnostics and therapeutic drug monitoring, as well as their role in detecting biomarkers and pharmaceutical residues. Furthermore, the challenges and future perspectives for LIG electrodes in achieving widespread adoption in the biomedical and pharmaceutical fields are examined, underscoring the need for improved scalability, selectivity, and regulatory compliance. This review elucidates the transformative potential of LIG-based technologies for addressing emerging healthcare challenges through innovative and cost-effective analytical solutions.</div></div>","PeriodicalId":100822,"journal":{"name":"Journal of Pharmaceutical and Biomedical Analysis Open","volume":"5 ","pages":"Article 100069"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical and Biomedical Analysis Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949771X25000209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Laser-induced graphene (LIG), also referred to as laser-ablated graphene (LAG), laser-scribed graphene (LSG), laser-produced graphene (LPG), laser-engineered graphene (LEG), and laser-derived graphene (LDG), has emerged as a versatile material for the development of high-performance electrodes that exhibit unique properties, such as high electrical conductivity, large surface area, chemical stability, and ease of functionalization. These characteristics render LIG electrodes particularly suitable for pharmaceutical and biomedical applications where rapid, sensitive, and reliable analytical methods are required. This review presents a comprehensive overview of recent advancements in the utilization of graphene electrodes for pharmaceutical and biomedical applications. They encompass their fabrication processes, surface modifications with nanomaterials and biomolecules, and the principal analytical techniques employed, including electrochemical sensing, biosensing, and drug monitoring. Particular emphasis is placed on the integration of LIG electrodes into point-of-care devices for clinical diagnostics and therapeutic drug monitoring, as well as their role in detecting biomarkers and pharmaceutical residues. Furthermore, the challenges and future perspectives for LIG electrodes in achieving widespread adoption in the biomedical and pharmaceutical fields are examined, underscoring the need for improved scalability, selectivity, and regulatory compliance. This review elucidates the transformative potential of LIG-based technologies for addressing emerging healthcare challenges through innovative and cost-effective analytical solutions.