Exploring the advantages of a multi-year-adaptive approach on cost-optimal long-term mini-grid design under different demand evolution scenarios

IF 5.4 Q2 ENERGY & FUELS
Milky Ali Gelchu , Jimmy Ehnberg , Dereje Shiferaw , Erik O. Ahlgren
{"title":"Exploring the advantages of a multi-year-adaptive approach on cost-optimal long-term mini-grid design under different demand evolution scenarios","authors":"Milky Ali Gelchu ,&nbsp;Jimmy Ehnberg ,&nbsp;Dereje Shiferaw ,&nbsp;Erik O. Ahlgren","doi":"10.1016/j.segy.2025.100178","DOIUrl":null,"url":null,"abstract":"<div><div>Mini-grids are essential for rural electrification in sub-Saharan Africa, but due to uncertainty about future demand evolution in non-electrified communities, cost-optimal long-term sizing and design is particularly difficult. Standard, non-adaptive design approaches single-year and multi-year, are highly susceptible to demand evolution uncertainties. Despite potentially great advantages there is a lack of studies investigating adaptive design approaches. Thus, this study, using particle swarm optimization, explores the advantages of a multi-year-adaptive approach on cost-optimal long-term solar PV mini-grid component sizing under three demand evolution scenarios, considering the impacts of load flexibility, varying discount rates, and potential future mini-grid component cost reductions. The results show that the multi-year-adaptive approach helps to manage demand evolution challenges. It leads to significant cost-savings, up to three-quarters, in higher demand evolution scenarios, compared to multi-year and single-year approaches. These cost-savings increase with load flexibility (up to 4 % with 10 % flexibility), higher discount rates (up to 9.4 % with rates from 7 % to 20 %), and component cost reductions (up to 3.6 % per 1 % reduction). The study demonstrates how an adaptive approach can be utilized to optimize mini-grid component sizing and enhance cost efficiency.</div></div>","PeriodicalId":34738,"journal":{"name":"Smart Energy","volume":"18 ","pages":"Article 100178"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666955225000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Mini-grids are essential for rural electrification in sub-Saharan Africa, but due to uncertainty about future demand evolution in non-electrified communities, cost-optimal long-term sizing and design is particularly difficult. Standard, non-adaptive design approaches single-year and multi-year, are highly susceptible to demand evolution uncertainties. Despite potentially great advantages there is a lack of studies investigating adaptive design approaches. Thus, this study, using particle swarm optimization, explores the advantages of a multi-year-adaptive approach on cost-optimal long-term solar PV mini-grid component sizing under three demand evolution scenarios, considering the impacts of load flexibility, varying discount rates, and potential future mini-grid component cost reductions. The results show that the multi-year-adaptive approach helps to manage demand evolution challenges. It leads to significant cost-savings, up to three-quarters, in higher demand evolution scenarios, compared to multi-year and single-year approaches. These cost-savings increase with load flexibility (up to 4 % with 10 % flexibility), higher discount rates (up to 9.4 % with rates from 7 % to 20 %), and component cost reductions (up to 3.6 % per 1 % reduction). The study demonstrates how an adaptive approach can be utilized to optimize mini-grid component sizing and enhance cost efficiency.

Abstract Image

探讨不同需求演变情景下,多年自适应方法在成本最优长期微电网设计中的优势
迷你电网对于撒哈拉以南非洲地区的农村电气化至关重要,但由于非电气化社区未来需求演变的不确定性,成本最优的长期规模和设计尤其困难。标准的、非自适应的设计方法是单年和多年的,非常容易受到需求演变不确定性的影响。尽管具有潜在的巨大优势,但缺乏对适应性设计方法的研究。因此,本研究采用粒子群优化方法,在三种需求演变情景下,考虑负载灵活性、不同贴现率和未来潜在的微网组件成本降低的影响,探讨了多年自适应方法在成本最优的长期太阳能光伏微网组件规模上的优势。结果表明,多年自适应方法有助于管理需求演变的挑战。与多年和单年方法相比,在更高的需求演变场景中,它可以节省高达四分之三的成本。这些成本节约增加了负载灵活性(10%的灵活性可达4%),更高的折扣率(从7%到20%的折扣率可达9.4%),以及组件成本降低(每降低1%可达3.6%)。该研究展示了如何利用自适应方法来优化微型电网组件大小并提高成本效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Energy
Smart Energy Engineering-Mechanical Engineering
CiteScore
9.20
自引率
0.00%
发文量
29
审稿时长
73 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信