GDP growth drivers in Saudi Arabia based on machine learning algorithms

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Mohamed F. Abd El-Aal , Mansour Shrahili , Mohamed Kayid , Shahid Mohammad
{"title":"GDP growth drivers in Saudi Arabia based on machine learning algorithms","authors":"Mohamed F. Abd El-Aal ,&nbsp;Mansour Shrahili ,&nbsp;Mohamed Kayid ,&nbsp;Shahid Mohammad","doi":"10.1016/j.jrras.2025.101380","DOIUrl":null,"url":null,"abstract":"<div><div>This study utilizes machine-learning algorithms to investigate the economic sectors that most significantly influence Saudi Arabia's economic growth rate, focusing on agriculture, industry, and services. The analysis shows that the random forest algorithm offers the highest predictive accuracy in identifying the key sectors driving economic growth. The research findings show that the service and industrial sectors account for 39.3% and 37.7% of Saudi Arabia's GDP growth, respectively. These results show that this country is moving significantly toward diversifying its economy as it depends more and more on non-oil sectors for growth. Even while the agricultural industry presently makes up a lower 23% of the total GDP, its comparison small share does not limit its potential for expansion. The paper emphasizes how agricultural developments, such as enhanced technologies and more efficient methods, could increase economic impact. The agricultural sector has the potential to play a significant role in boosting future economic growth, which would further help Saudi Arabia's objectives for sustainable growth and diversification.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"18 2","pages":"Article 101380"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850725000925","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study utilizes machine-learning algorithms to investigate the economic sectors that most significantly influence Saudi Arabia's economic growth rate, focusing on agriculture, industry, and services. The analysis shows that the random forest algorithm offers the highest predictive accuracy in identifying the key sectors driving economic growth. The research findings show that the service and industrial sectors account for 39.3% and 37.7% of Saudi Arabia's GDP growth, respectively. These results show that this country is moving significantly toward diversifying its economy as it depends more and more on non-oil sectors for growth. Even while the agricultural industry presently makes up a lower 23% of the total GDP, its comparison small share does not limit its potential for expansion. The paper emphasizes how agricultural developments, such as enhanced technologies and more efficient methods, could increase economic impact. The agricultural sector has the potential to play a significant role in boosting future economic growth, which would further help Saudi Arabia's objectives for sustainable growth and diversification.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信