Geospatial clustering as a method to reduce the computational load in urban building energy simulation

IF 10.5 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Mohamad Hasan Khajedehi, Enrico Prataviera, Sara Bordignon, Angelo Zarrella, Michele De Carli
{"title":"Geospatial clustering as a method to reduce the computational load in urban building energy simulation","authors":"Mohamad Hasan Khajedehi,&nbsp;Enrico Prataviera,&nbsp;Sara Bordignon,&nbsp;Angelo Zarrella,&nbsp;Michele De Carli","doi":"10.1016/j.scs.2025.106247","DOIUrl":null,"url":null,"abstract":"<div><div>Since the recent birth of physics-based urban building energy modeling (UBEM), researchers have started tackling the issues characterizing this research field, mainly linked to the lack of extensive and standardized building information datasets and the necessity of simplifying the modeling process. Concerning the latter, geospatial clustering approaches seem to be plausible methods to reduce the computational load in urban simulation, and this work aims to test their suitability and performance.</div><div>For this purpose, a case study of almost 3800 buildings in Padova, Italy, is analyzed. The tendency analysis is first used to quantify the underlying clusters that could be present. The study of this metric reveals the organic morphology and the heterogeneity of building stock in European cities like Padova. Additionally, several clustering algorithms are applied to the location, use, envelope, and geometry variables to simulate building clusters and quantify the increase in geometric and heating/cooling demand uncertainty.</div><div>Results show that, for this case study, building clusters are characterized by lower volumes than when considering single buildings, which is also reflected in a lower heating and cooling demand prediction. Nonetheless, these errors are found to be in an acceptable range (less than 6%) for UBEM applications.</div></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":"122 ","pages":"Article 106247"},"PeriodicalIF":10.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670725001246","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Since the recent birth of physics-based urban building energy modeling (UBEM), researchers have started tackling the issues characterizing this research field, mainly linked to the lack of extensive and standardized building information datasets and the necessity of simplifying the modeling process. Concerning the latter, geospatial clustering approaches seem to be plausible methods to reduce the computational load in urban simulation, and this work aims to test their suitability and performance.
For this purpose, a case study of almost 3800 buildings in Padova, Italy, is analyzed. The tendency analysis is first used to quantify the underlying clusters that could be present. The study of this metric reveals the organic morphology and the heterogeneity of building stock in European cities like Padova. Additionally, several clustering algorithms are applied to the location, use, envelope, and geometry variables to simulate building clusters and quantify the increase in geometric and heating/cooling demand uncertainty.
Results show that, for this case study, building clusters are characterized by lower volumes than when considering single buildings, which is also reflected in a lower heating and cooling demand prediction. Nonetheless, these errors are found to be in an acceptable range (less than 6%) for UBEM applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Cities and Society
Sustainable Cities and Society Social Sciences-Geography, Planning and Development
CiteScore
22.00
自引率
13.70%
发文量
810
审稿时长
27 days
期刊介绍: Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including: 1. Smart cities and resilient environments; 2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management; 3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management); 4. Energy efficient, low/zero carbon, and green buildings/communities; 5. Climate change mitigation and adaptation in urban environments; 6. Green infrastructure and BMPs; 7. Environmental Footprint accounting and management; 8. Urban agriculture and forestry; 9. ICT, smart grid and intelligent infrastructure; 10. Urban design/planning, regulations, legislation, certification, economics, and policy; 11. Social aspects, impacts and resiliency of cities; 12. Behavior monitoring, analysis and change within urban communities; 13. Health monitoring and improvement; 14. Nexus issues related to sustainable cities and societies; 15. Smart city governance; 16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society; 17. Big data, machine learning, and artificial intelligence applications and case studies; 18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems. 19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management; 20. Waste reduction and recycling; 21. Wastewater collection, treatment and recycling; 22. Smart, clean and healthy transportation systems and infrastructure;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信