Phase separation behaviour during direct solvent extraction of Corynebacterium glutamicum fermentation broth – Systematic study of crud suppression

Q2 Materials Science
Jörg Eberz , Lara Strehl , Marcel Mann , Andreas Jupke , Jørgen Barsett Magnus
{"title":"Phase separation behaviour during direct solvent extraction of Corynebacterium glutamicum fermentation broth – Systematic study of crud suppression","authors":"Jörg Eberz ,&nbsp;Lara Strehl ,&nbsp;Marcel Mann ,&nbsp;Andreas Jupke ,&nbsp;Jørgen Barsett Magnus","doi":"10.1016/j.crgsc.2025.100448","DOIUrl":null,"url":null,"abstract":"<div><div>The economic competitiveness of bio-based production processes is often hindered by the high costs associated with downstream processing, compared to fossil-based methods. Liquid-liquid extraction is a widely used technique for aqueous fermentation systems and offers significant cost-saving potential, especially if extraction could be performed directly from the fermentation broth without prior cell separation. However, this is often hindered by the formation of \"crud\" — a deposit or emulsion at the interface between two partially settled phases. This study investigates the liquid-liquid phase separation of <em>Corynebacterium glutamicum</em> DM 1933 fermentation broths using five different solvents. We systematically examined the impact of cell surface properties, modified through nutrient concentration, on crud formation. In addition, the variation in salt concentration and pH after fermentation was analysed. Our findings show that the present nutrient concentration influences the cell surface properties and, consequently, crud formation. A more hydrophilic cell surface was present at a lower phosphate concentration, whereas a more hydrophobic cell surface was measured for a lower nitrogen and iron concentration. With a more hydrophobic cell surface, the fermentation broth showed a large crud phase, while a decrease in crud formation could be seen for fermentation broths with a more hydrophilic cell surface. Furthermore, the crud formation is influenced by the pH, cell and salt concentration and strongly by the used solvent.</div></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"10 ","pages":"Article 100448"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666086525000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

The economic competitiveness of bio-based production processes is often hindered by the high costs associated with downstream processing, compared to fossil-based methods. Liquid-liquid extraction is a widely used technique for aqueous fermentation systems and offers significant cost-saving potential, especially if extraction could be performed directly from the fermentation broth without prior cell separation. However, this is often hindered by the formation of "crud" — a deposit or emulsion at the interface between two partially settled phases. This study investigates the liquid-liquid phase separation of Corynebacterium glutamicum DM 1933 fermentation broths using five different solvents. We systematically examined the impact of cell surface properties, modified through nutrient concentration, on crud formation. In addition, the variation in salt concentration and pH after fermentation was analysed. Our findings show that the present nutrient concentration influences the cell surface properties and, consequently, crud formation. A more hydrophilic cell surface was present at a lower phosphate concentration, whereas a more hydrophobic cell surface was measured for a lower nitrogen and iron concentration. With a more hydrophobic cell surface, the fermentation broth showed a large crud phase, while a decrease in crud formation could be seen for fermentation broths with a more hydrophilic cell surface. Furthermore, the crud formation is influenced by the pH, cell and salt concentration and strongly by the used solvent.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Green and Sustainable Chemistry
Current Research in Green and Sustainable Chemistry Materials Science-Materials Chemistry
CiteScore
11.20
自引率
0.00%
发文量
116
审稿时长
78 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信