{"title":"Multiple scales homogenisation of a porous viscoelastic material with rigid inclusions: Application to lithium-ion battery electrodes","authors":"J.M. Foster , A.F. Galvis , B. Protas , S.J. Chapman","doi":"10.1016/j.jmps.2025.106072","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the mechanical behaviour of the composite materials used in modern lithium-ion battery electrodes. These contain relatively high modulus active particle inclusions within a two-component matrix of liquid electrolyte which penetrates the pore space within a viscoelastic polymer binder. Deformations are driven by a combination of (i) swelling/contraction of the electrode particles in response to lithium insertion/extraction, (ii) swelling of the binder as it absorbs electrolyte, (iii) external loading and (iv) flow of the electrolyte within the pores. We derive the macroscale response of the composite using systematic multiple scales homogenisation by exploiting the disparity in lengthscales associated with the size of an electrode particle and the electrode as a whole. The resulting effective model accurately replicates the behaviour of the original model (as is demonstrated by a series of relevant case studies) but, crucially, is markedly simpler and hence cheaper to solve. This has significant practical value because it facilitates low-cost, realistic computations of the mechanical states of battery electrodes, thereby allowing model-assisted development of battery designs that are better able to withstand the mechanical abuse encountered in practice and ultimately paving the way for longer-lasting batteries.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"199 ","pages":"Article 106072"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625000481","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the mechanical behaviour of the composite materials used in modern lithium-ion battery electrodes. These contain relatively high modulus active particle inclusions within a two-component matrix of liquid electrolyte which penetrates the pore space within a viscoelastic polymer binder. Deformations are driven by a combination of (i) swelling/contraction of the electrode particles in response to lithium insertion/extraction, (ii) swelling of the binder as it absorbs electrolyte, (iii) external loading and (iv) flow of the electrolyte within the pores. We derive the macroscale response of the composite using systematic multiple scales homogenisation by exploiting the disparity in lengthscales associated with the size of an electrode particle and the electrode as a whole. The resulting effective model accurately replicates the behaviour of the original model (as is demonstrated by a series of relevant case studies) but, crucially, is markedly simpler and hence cheaper to solve. This has significant practical value because it facilitates low-cost, realistic computations of the mechanical states of battery electrodes, thereby allowing model-assisted development of battery designs that are better able to withstand the mechanical abuse encountered in practice and ultimately paving the way for longer-lasting batteries.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.