Upgrading waste activated sludge into valuable biosolids via an integrated biochemical approach

IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Xi Lu , Zhiyao Wang , Zheng Kong , Haoran Duan , Zhiqiang Zuo , Zhetai Hu , Min Zheng , Shihu Hu
{"title":"Upgrading waste activated sludge into valuable biosolids via an integrated biochemical approach","authors":"Xi Lu ,&nbsp;Zhiyao Wang ,&nbsp;Zheng Kong ,&nbsp;Haoran Duan ,&nbsp;Zhiqiang Zuo ,&nbsp;Zhetai Hu ,&nbsp;Min Zheng ,&nbsp;Shihu Hu","doi":"10.1016/j.wroa.2025.100325","DOIUrl":null,"url":null,"abstract":"<div><div>Sludge management is a significant challenge for water utilities worldwide. High costs are largely driven by poor digestibility and dewaterability, while elevated concentrations of pathogens and toxic metals limit the safe and beneficial reuse of sludge. This study proposes an innovative integrated biochemical method that concurrently enhances sludge digestibility, facilitates toxic metal removal, improves dewaterability, and achieves pathogen reduction. In a laboratory-scale aerobic sludge digester processing waste-activated sludge, in-situ sludge acidification was achieved within 35–40 days, reaching a pH of approximately 2.6. This acidification was driven by the natural cultivation of acid-tolerant ammonia-oxidizing bacteria (<em>Ca.</em> Nitrosoglobus), which generate protons by oxidizing ammonium released from the sludge. Sludge acidification resulted in significant improvements, including volatile solids (VS) destruction (49 ± 6 %), pathogen reduction (∼4 log reduction), enhanced dewaterability (demonstrated by three methods), and toxic metal solubilization. While most toxic metals were solubilized to meet the Grade A biosolid standard (the highest biosolids standard qualified for unrestricted and safe use), copper only met the Grade B standard. To address this, a low dose of nitrite (5 mg N/L) was added to the acidified sludge (pH 2.2, adjusted with a small amount of acid) for 5 h, successfully solubilizing copper and upgrading the sludge to Grade A standards. Overall, this study demonstrates the potential of <em>in-situ</em> sludge acidification combined with minimal nitrite and acid addition as an efficient approach for improving multiple aspects of sludge management.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"28 ","pages":"Article 100325"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914725000246","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sludge management is a significant challenge for water utilities worldwide. High costs are largely driven by poor digestibility and dewaterability, while elevated concentrations of pathogens and toxic metals limit the safe and beneficial reuse of sludge. This study proposes an innovative integrated biochemical method that concurrently enhances sludge digestibility, facilitates toxic metal removal, improves dewaterability, and achieves pathogen reduction. In a laboratory-scale aerobic sludge digester processing waste-activated sludge, in-situ sludge acidification was achieved within 35–40 days, reaching a pH of approximately 2.6. This acidification was driven by the natural cultivation of acid-tolerant ammonia-oxidizing bacteria (Ca. Nitrosoglobus), which generate protons by oxidizing ammonium released from the sludge. Sludge acidification resulted in significant improvements, including volatile solids (VS) destruction (49 ± 6 %), pathogen reduction (∼4 log reduction), enhanced dewaterability (demonstrated by three methods), and toxic metal solubilization. While most toxic metals were solubilized to meet the Grade A biosolid standard (the highest biosolids standard qualified for unrestricted and safe use), copper only met the Grade B standard. To address this, a low dose of nitrite (5 mg N/L) was added to the acidified sludge (pH 2.2, adjusted with a small amount of acid) for 5 h, successfully solubilizing copper and upgrading the sludge to Grade A standards. Overall, this study demonstrates the potential of in-situ sludge acidification combined with minimal nitrite and acid addition as an efficient approach for improving multiple aspects of sludge management.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Research X
Water Research X Environmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍: Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信