Activation of the hippocampal CA1 astrocyte Gq and Gi G protein-coupled receptors exerts a protective effect against attention deficit hyperactivity disorder

IF 4.8 2区 医学 Q2 IMMUNOLOGY
Yu-Dong Shan , Zhi-Fang Yu , Ge-Ge Lv , Yong-Lin Shan , Bao-Dong Li , Jian-Yong Zhao , Xiao-Ming Li , Wei-Juan Gao , Li-Min Zhang
{"title":"Activation of the hippocampal CA1 astrocyte Gq and Gi G protein-coupled receptors exerts a protective effect against attention deficit hyperactivity disorder","authors":"Yu-Dong Shan ,&nbsp;Zhi-Fang Yu ,&nbsp;Ge-Ge Lv ,&nbsp;Yong-Lin Shan ,&nbsp;Bao-Dong Li ,&nbsp;Jian-Yong Zhao ,&nbsp;Xiao-Ming Li ,&nbsp;Wei-Juan Gao ,&nbsp;Li-Min Zhang","doi":"10.1016/j.intimp.2025.114382","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Attention deficit hyperactivity disorder (ADHD) is characterized by symptoms such as inattention, hyperactivity and impulsiveness, which significantly impact the healthy development of children. Our prior research demonstrated that exposure to S-Ketamine during pregnancy can lead to the development of ADHD, and existing studies have established a close association between astrocytes and the onset and progression of ADHD. The activation and inhibition of astrocytes are closely linked to neuropsychiatric dysfunction, and astrocytic NOD-like receptor protein 3 (NLRP3) has been reported to contribute to alterations in mental state and cognitive deficits. Thus, this study aims to investigate the role of astrocytes in ADHD by selectively modulating astrocyte function through Gq and Gi G protein-coupled receptors (GPCRs) and by specifically targeting the knockout of NLRP3.</div></div><div><h3>Methods</h3><div>Pregnant C57BL/6 J mice or mice with a specific deletion of NLRP3 in astrocytes were administered intraperitoneal injections of 15 mg/kg of S-ketamine for 5 consecutive days from gestational day 14 to 18 to establish an ADHD model. To modulate astrocyte activity in the hippocampal CA1 region, we administered astrocyte-specific Gq-Adeno-associated virus (AAV) or Gi-AAV into the CA1 and maintained treatment with CNO. At 21 days postnatally, we conducted open field test (OFT), novel object recognition (NOR), elevated plus maze (EPM) and fear conditioning (FC) in the offspring mice. Additionally, on postnatal day 21, we implanted electrodes in the CA1 region of the offspring mice for neurophysiological monitoring and investigated local field potentials (LFP) during NOR on postnatal day 27. Lastly, pathological assessments were conducted after euthanasia.</div></div><div><h3><strong>Results</strong></h3><div>Both the activation and inhibition of astrocytes in the hippocampal CA1 region improved impulsive-like behaviors and cognitive function in ADHD mice, reduced the power of theta (θ) oscillations during novel object exploration and decreased NLRP3-associated inflammatory factors, including cleaved caspase-1 and IL-18. Furthermore, compared to WT mice, astrocyte-specific NLRP3 conditional knockout mice demonstrated significantly reduced impulsive behavior and cognitive deficits, as well as a decrease in θ oscillation power and a reduction in NLRP3-associated inflammatory factors.</div></div><div><h3><strong>Conclusions</strong></h3><div>Our data provide compelling evidence that the activation of astrocytes alleviated impulsive-like behaviors and cognitive dysfunction, possibly by reducing NLRP3-associated pyroptosis following changes in calcium levels within the astrocytes. The activation of astrocytes can be a potential therapeutic target for ADHD.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"152 ","pages":"Article 114382"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925003728","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Attention deficit hyperactivity disorder (ADHD) is characterized by symptoms such as inattention, hyperactivity and impulsiveness, which significantly impact the healthy development of children. Our prior research demonstrated that exposure to S-Ketamine during pregnancy can lead to the development of ADHD, and existing studies have established a close association between astrocytes and the onset and progression of ADHD. The activation and inhibition of astrocytes are closely linked to neuropsychiatric dysfunction, and astrocytic NOD-like receptor protein 3 (NLRP3) has been reported to contribute to alterations in mental state and cognitive deficits. Thus, this study aims to investigate the role of astrocytes in ADHD by selectively modulating astrocyte function through Gq and Gi G protein-coupled receptors (GPCRs) and by specifically targeting the knockout of NLRP3.

Methods

Pregnant C57BL/6 J mice or mice with a specific deletion of NLRP3 in astrocytes were administered intraperitoneal injections of 15 mg/kg of S-ketamine for 5 consecutive days from gestational day 14 to 18 to establish an ADHD model. To modulate astrocyte activity in the hippocampal CA1 region, we administered astrocyte-specific Gq-Adeno-associated virus (AAV) or Gi-AAV into the CA1 and maintained treatment with CNO. At 21 days postnatally, we conducted open field test (OFT), novel object recognition (NOR), elevated plus maze (EPM) and fear conditioning (FC) in the offspring mice. Additionally, on postnatal day 21, we implanted electrodes in the CA1 region of the offspring mice for neurophysiological monitoring and investigated local field potentials (LFP) during NOR on postnatal day 27. Lastly, pathological assessments were conducted after euthanasia.

Results

Both the activation and inhibition of astrocytes in the hippocampal CA1 region improved impulsive-like behaviors and cognitive function in ADHD mice, reduced the power of theta (θ) oscillations during novel object exploration and decreased NLRP3-associated inflammatory factors, including cleaved caspase-1 and IL-18. Furthermore, compared to WT mice, astrocyte-specific NLRP3 conditional knockout mice demonstrated significantly reduced impulsive behavior and cognitive deficits, as well as a decrease in θ oscillation power and a reduction in NLRP3-associated inflammatory factors.

Conclusions

Our data provide compelling evidence that the activation of astrocytes alleviated impulsive-like behaviors and cognitive dysfunction, possibly by reducing NLRP3-associated pyroptosis following changes in calcium levels within the astrocytes. The activation of astrocytes can be a potential therapeutic target for ADHD.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
3.60%
发文量
935
审稿时长
53 days
期刊介绍: International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome. The subject material appropriate for submission includes: • Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders. • Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state. • Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses. • Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action. • Agents that activate genes or modify transcription and translation within the immune response. • Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active. • Production, function and regulation of cytokines and their receptors. • Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信