{"title":"Semisimple Langlands for GL2(Qp) and mod p Hecke modules","authors":"Cédric Pépin , Tobias Schmidt","doi":"10.1016/j.jnt.2024.11.013","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>p</mi><mo>≥</mo><mn>5</mn></math></span> and let <span><math><mi>Z</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mo>)</mo></math></span> be the centre of the mod <em>p</em> pro-<em>p</em>-Iwahori Hecke algebra of <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>. Let <em>X</em> be the projective curve parametrizing 2-dimensional mod <em>p</em> semi-simple representations of the absolute Galois group <span><math><mrow><mi>Gal</mi></mrow><mo>(</mo><msub><mrow><mover><mrow><mi>Q</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub><mo>/</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>. We construct a quotient morphism of schemes <span><math><mi>L</mi><mo>:</mo><mi>Spec</mi><mspace></mspace><mi>Z</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mo>)</mo><mo>→</mo><mi>X</mi></math></span>. We then show that the correspondence between the specialization <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><mi>z</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup></math></span> of the spherical <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup></math></span>-module <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup></math></span> from <span><span>[PS]</span></span> in closed points <span><math><mi>z</mi><mo>∈</mo><mi>Spec</mi><mspace></mspace><mi>Z</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>p</mi></mrow></msub></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mo>)</mo></math></span> and the Galois representation <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></msub></math></span> <em>is</em> the semi-simple mod <em>p</em> local Langlands correspondence for the group <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"274 ","pages":"Pages 219-251"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25000551","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let and let be the centre of the mod p pro-p-Iwahori Hecke algebra of . Let X be the projective curve parametrizing 2-dimensional mod p semi-simple representations of the absolute Galois group . We construct a quotient morphism of schemes . We then show that the correspondence between the specialization of the spherical -module from [PS] in closed points and the Galois representation is the semi-simple mod p local Langlands correspondence for the group .
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.