Álvaro Amado-Fierro , Tim Offermans , Jeroen Jansen , Teresa A. Centeno , María A. Díez
{"title":"Chemometrics to connect feedstock quality, process settings and calorific value of hydrochar through infrared spectra","authors":"Álvaro Amado-Fierro , Tim Offermans , Jeroen Jansen , Teresa A. Centeno , María A. Díez","doi":"10.1016/j.fuproc.2025.108201","DOIUrl":null,"url":null,"abstract":"<div><div>The current urgent need for clean energy has sparked interest in hydrothermal carbonization (HTC) as a sustainable avenue to convert high moisture biomass wastes into an efficient bioenergy source. Without destructive methodologies and offering distinct advantages (e.g. real-time analysis) over traditional assessments, chemometric methods coupled to Fourier Transform Infrared Spectroscopy (FTIR) is presented as an innovative approach for a rapid assessment of the higher heating value (HHV) of hydrochars. With the help of advanced chemometric techniques such as Partial Least Squares (PLS) or Sequentially Orthogonalized PLS (SO-PLS) further insights are gained into the underlying chemical transformations during HTC treatment of a wide variety of biodegradable wastes. Our model predicts the HHV of the diverse hydrochars with an impressive R<sup>2</sup> value of 0.961 and an RMSE of 0.845 MJ/kg. The scores and loading plots point out the pivotal functional groups that distinguish the various hydrochars, while also unveiling the inherent similarities among them. A second model has been further devised to predict the HHV of hydrochar as a function of feedstock composition and HTC operation conditions, thus allowing process optimization. This challenging approach can be extrapolated to quickly evaluate other physicochemical parameters of hydrochars designed for various applications.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"271 ","pages":"Article 108201"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382025000256","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The current urgent need for clean energy has sparked interest in hydrothermal carbonization (HTC) as a sustainable avenue to convert high moisture biomass wastes into an efficient bioenergy source. Without destructive methodologies and offering distinct advantages (e.g. real-time analysis) over traditional assessments, chemometric methods coupled to Fourier Transform Infrared Spectroscopy (FTIR) is presented as an innovative approach for a rapid assessment of the higher heating value (HHV) of hydrochars. With the help of advanced chemometric techniques such as Partial Least Squares (PLS) or Sequentially Orthogonalized PLS (SO-PLS) further insights are gained into the underlying chemical transformations during HTC treatment of a wide variety of biodegradable wastes. Our model predicts the HHV of the diverse hydrochars with an impressive R2 value of 0.961 and an RMSE of 0.845 MJ/kg. The scores and loading plots point out the pivotal functional groups that distinguish the various hydrochars, while also unveiling the inherent similarities among them. A second model has been further devised to predict the HHV of hydrochar as a function of feedstock composition and HTC operation conditions, thus allowing process optimization. This challenging approach can be extrapolated to quickly evaluate other physicochemical parameters of hydrochars designed for various applications.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.