Active exploration and working memory synaptic plasticity shapes goal-directed behavior in curiosity-driven learning

IF 2.1 3区 心理学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Quentin Houbre, Roel Pieters
{"title":"Active exploration and working memory synaptic plasticity shapes goal-directed behavior in curiosity-driven learning","authors":"Quentin Houbre,&nbsp;Roel Pieters","doi":"10.1016/j.cogsys.2025.101339","DOIUrl":null,"url":null,"abstract":"<div><div>The autonomous discovery and learning of robotic goals is a challenging issue to address. In this work, we propose a cognitive architecture that supports the autonomous discovery and learning of goals. To do so, we draw inspiration from neuroscience by modeling several brain processes such as attention and exploration that we articulate with curiosity-based learning. Moreover, we employ variational autoencoders and create projections of the latent spaces to dynamic neural fields through linear scaling. The aim of these projections is to investigate synaptic plasticity by varying a scaling factor. We demonstrate that a low scaling factor supports a random exploration strategy that produces more diverse actions with no tolerance regarding the discovery of similar goals. On the contrary, a sufficiently large scaling factor drives the exploration toward uncertainty reduction, focusing exploration as well as generating similar actions. In our case, we postulate that synaptic plasticity in working memory can be crucial for exploration and the learning of goals.</div></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"91 ","pages":"Article 101339"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041725000191","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The autonomous discovery and learning of robotic goals is a challenging issue to address. In this work, we propose a cognitive architecture that supports the autonomous discovery and learning of goals. To do so, we draw inspiration from neuroscience by modeling several brain processes such as attention and exploration that we articulate with curiosity-based learning. Moreover, we employ variational autoencoders and create projections of the latent spaces to dynamic neural fields through linear scaling. The aim of these projections is to investigate synaptic plasticity by varying a scaling factor. We demonstrate that a low scaling factor supports a random exploration strategy that produces more diverse actions with no tolerance regarding the discovery of similar goals. On the contrary, a sufficiently large scaling factor drives the exploration toward uncertainty reduction, focusing exploration as well as generating similar actions. In our case, we postulate that synaptic plasticity in working memory can be crucial for exploration and the learning of goals.
主动探索和工作记忆突触可塑性形成好奇心驱动学习中的目标导向行为
机器人目标的自主发现和学习是一个具有挑战性的问题。在这项工作中,我们提出了一个支持自主发现和学习目标的认知架构。为了做到这一点,我们从神经科学中汲取灵感,通过模拟几个大脑过程,如注意力和探索,我们用基于好奇心的学习来表达。此外,我们采用变分自编码器,并通过线性缩放创建潜在空间到动态神经场的投影。这些投影的目的是通过改变比例因子来研究突触的可塑性。我们证明了低比例因子支持随机探索策略,该策略可以产生更多样化的行动,并且不会容忍类似目标的发现。相反,足够大的比例因子会促使探索朝着减少不确定性的方向发展,使探索更加集中,并产生类似的行动。在我们的案例中,我们假设工作记忆中的突触可塑性对于探索和学习目标至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Systems Research
Cognitive Systems Research 工程技术-计算机:人工智能
CiteScore
9.40
自引率
5.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial. The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition. Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信