Exploring the effects of decabromodiphenyl ether on meiofaunal communities: An experimental approach

IF 5.3 3区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
E. Grassi , M. Greco , L. Guidi , M. Pasquariello , E. Al-Enezi , M. Trifuoggi , F. Frontalini , F. Semprucci
{"title":"Exploring the effects of decabromodiphenyl ether on meiofaunal communities: An experimental approach","authors":"E. Grassi ,&nbsp;M. Greco ,&nbsp;L. Guidi ,&nbsp;M. Pasquariello ,&nbsp;E. Al-Enezi ,&nbsp;M. Trifuoggi ,&nbsp;F. Frontalini ,&nbsp;F. Semprucci","doi":"10.1016/j.marpolbul.2025.117762","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the ecotoxicological effects of BDE-209, a persistent organic pollutant (POP), prevalent in Kuwait's coastal-industrial zones, on meiofaunal communities. A mesocosm experiment was conducted, exposing sediment-dwelling meiofaunal communities from sediments near Failaka Island (Kuwait) to gradient concentrations of BDE-209 (0.01–20 mg/kg) over a 4-week period. The effect on meiofaunal communities was evaluated by changes in the taxonomic composition, alpha and beta diversity metrics, and the Nematodes/Copepods (Ne/Co) ratio. Our findings reveal that BDE-209 exposure significantly reduced alpha diversity and induced shifts in the community structure, favouring resilient taxa such as nematodes. The increasing Ne/Co ratio underscores structural changes and highlights the pollutant's potential to disrupt sedimentary ecosystem functions. Temporal analyses confirm the persistence of BDE-209 in sediments despite partial degradation, reinforcing its classification as a POP with long-term ecological risks. This study provides valuable insights into the responses of meiofaunal communities to POPs like BDE-209, demonstrating their efficacy as bioindicators for sediment quality. By integrating meiofaunal biomonitoring metrics with mesocosm experiments, this research provides a robust method for assessing the ecological impacts of BDE-209, particularly in regions lacking regulatory frameworks. It also raises awareness of the broader implications of POPs in marine ecosystems. These findings highlight the urgent need for enhanced monitoring programs and stricter regulations to mitigate PBDE contamination in marine ecosystems. Future research should focus on field-based validation of mesocosm results and investigate the interactive effects of BDE-209 with other pollutants to better understand its cumulative ecological impact.</div></div>","PeriodicalId":18215,"journal":{"name":"Marine pollution bulletin","volume":"214 ","pages":"Article 117762"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine pollution bulletin","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025326X25002371","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the ecotoxicological effects of BDE-209, a persistent organic pollutant (POP), prevalent in Kuwait's coastal-industrial zones, on meiofaunal communities. A mesocosm experiment was conducted, exposing sediment-dwelling meiofaunal communities from sediments near Failaka Island (Kuwait) to gradient concentrations of BDE-209 (0.01–20 mg/kg) over a 4-week period. The effect on meiofaunal communities was evaluated by changes in the taxonomic composition, alpha and beta diversity metrics, and the Nematodes/Copepods (Ne/Co) ratio. Our findings reveal that BDE-209 exposure significantly reduced alpha diversity and induced shifts in the community structure, favouring resilient taxa such as nematodes. The increasing Ne/Co ratio underscores structural changes and highlights the pollutant's potential to disrupt sedimentary ecosystem functions. Temporal analyses confirm the persistence of BDE-209 in sediments despite partial degradation, reinforcing its classification as a POP with long-term ecological risks. This study provides valuable insights into the responses of meiofaunal communities to POPs like BDE-209, demonstrating their efficacy as bioindicators for sediment quality. By integrating meiofaunal biomonitoring metrics with mesocosm experiments, this research provides a robust method for assessing the ecological impacts of BDE-209, particularly in regions lacking regulatory frameworks. It also raises awareness of the broader implications of POPs in marine ecosystems. These findings highlight the urgent need for enhanced monitoring programs and stricter regulations to mitigate PBDE contamination in marine ecosystems. Future research should focus on field-based validation of mesocosm results and investigate the interactive effects of BDE-209 with other pollutants to better understand its cumulative ecological impact.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine pollution bulletin
Marine pollution bulletin 环境科学-海洋与淡水生物学
CiteScore
10.20
自引率
15.50%
发文量
1077
审稿时长
68 days
期刊介绍: Marine Pollution Bulletin is concerned with the rational use of maritime and marine resources in estuaries, the seas and oceans, as well as with documenting marine pollution and introducing new forms of measurement and analysis. A wide range of topics are discussed as news, comment, reviews and research reports, not only on effluent disposal and pollution control, but also on the management, economic aspects and protection of the marine environment in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信