Efficient post-treatment strategy for enhancing the performance and stability of the inverted perovskite solar cells based on Boc-D-Val-OH

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fu Liu , Yijun Zhu , Jian Xiong , Zhen He , Yuanwei Pu , Yongchao Liang , Qiaofei Hu , Yinqi Zuo , Qiyu Yang , Dongjie Wang , Yu Huang , Qiaogan Liao , Zheling Zhang , Jian Zhang
{"title":"Efficient post-treatment strategy for enhancing the performance and stability of the inverted perovskite solar cells based on Boc-D-Val-OH","authors":"Fu Liu ,&nbsp;Yijun Zhu ,&nbsp;Jian Xiong ,&nbsp;Zhen He ,&nbsp;Yuanwei Pu ,&nbsp;Yongchao Liang ,&nbsp;Qiaofei Hu ,&nbsp;Yinqi Zuo ,&nbsp;Qiyu Yang ,&nbsp;Dongjie Wang ,&nbsp;Yu Huang ,&nbsp;Qiaogan Liao ,&nbsp;Zheling Zhang ,&nbsp;Jian Zhang","doi":"10.1016/j.orgel.2025.107228","DOIUrl":null,"url":null,"abstract":"<div><div>Recombination losses from perovskite/fullerene interface issues significantly limit the performance and stability of inverted perovskite solar cells (PSCs). A simple post-treatment method based on Boc-D-Val-OH (BDVO) is developed to overcome these issues. A systematic study has been conducted on the impact of BDVO on the physical properties of the film and the device. The results confirm that BDVO post-treatment can passivate trap states of the perovskite film surface, improve contact at the perovskite/fullerene interface, and enhance the built-in interface electrical field of the device. That improvements lead to enhanced carrier transport dynamics, as well as improves the performance and stability of PSCs. A relatively higher power conversion efficiency (PCE) of 23.02 % is achieved by BDVO post-treatment. Additionally, after storage in air (30–40 RH%) for 264 h (12 days) and in N<sub>2</sub> for 312 h (13 days), the PCE of the BDVO devices can remain at 90 % and 95 % of their initial values, respectively, while the control devices under the same exposure conditions only maintain 83 % and 88 % of their initial PCE values. The study sheds light on the pathway for perovskite/fullerene interface material selection and design, aimed at enhancing device performance and stability through streamlined post-treatment.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"141 ","pages":"Article 107228"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119925000345","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recombination losses from perovskite/fullerene interface issues significantly limit the performance and stability of inverted perovskite solar cells (PSCs). A simple post-treatment method based on Boc-D-Val-OH (BDVO) is developed to overcome these issues. A systematic study has been conducted on the impact of BDVO on the physical properties of the film and the device. The results confirm that BDVO post-treatment can passivate trap states of the perovskite film surface, improve contact at the perovskite/fullerene interface, and enhance the built-in interface electrical field of the device. That improvements lead to enhanced carrier transport dynamics, as well as improves the performance and stability of PSCs. A relatively higher power conversion efficiency (PCE) of 23.02 % is achieved by BDVO post-treatment. Additionally, after storage in air (30–40 RH%) for 264 h (12 days) and in N2 for 312 h (13 days), the PCE of the BDVO devices can remain at 90 % and 95 % of their initial values, respectively, while the control devices under the same exposure conditions only maintain 83 % and 88 % of their initial PCE values. The study sheds light on the pathway for perovskite/fullerene interface material selection and design, aimed at enhancing device performance and stability through streamlined post-treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信