A co-feeding strategy of formate and H2 for methanogens – Enhancing growth parameters and methane production

IF 7.2 2区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY
Björn Sabel-Becker , Nicolas Patrick Jost , Anne-Kristin Kaster , Dirk Holtmann
{"title":"A co-feeding strategy of formate and H2 for methanogens – Enhancing growth parameters and methane production","authors":"Björn Sabel-Becker ,&nbsp;Nicolas Patrick Jost ,&nbsp;Anne-Kristin Kaster ,&nbsp;Dirk Holtmann","doi":"10.1016/j.jcou.2025.103049","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon dioxide emissions could be reduced by developing alternative production processes based on a renewable C1 building block. Formate could link the electrical and chemical sectors as its production can be realized through the electrochemical reduction of CO<sub>2</sub>. Its function could be either a long-term energy storage medium or a starting material in a bioprocess. In this study, formate served as an energy and carbon source for methane production with a formatotrophic mixed culture. It was successfully shown that the theoretical maximum of 0.25 methane per formate can be overcome by co-feeding formate with H<sub>2</sub>. The production yield doubled to 0.555 ± 0.021 in a CO<sub>2</sub>-free buffer and 0.591 ± 0.032 in a bicarbonate buffer. With excess CO<sub>2</sub> in the bicarbonate buffered culture, it was shown that the H<sub>2</sub> transfer rate was the limiting factor for this process. Otherwise, the bicarbonate buffered culture outperformed other buffered cultures in terms of start-up time, formate consumption, and methane production rate. The additional CO<sub>2</sub> in the gas phase might have enhanced the growth of methanogens in an early stage of cultivation. 16S sequencing revealed the composition of the cultures. With nearly 25 %, the genus <em>Methanofollis</em> was one of the most dominant strains and the only detectable methanogen in the mixed culture, making it an interesting candidate for formatotrophic methane production. In summary, the co-feeding strategy might be an approach to utilizing formate as feedstock for the bioproduction of methane if hurdles like the H<sub>2</sub> transfer rates can be overcome.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"93 ","pages":"Article 103049"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982025000332","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon dioxide emissions could be reduced by developing alternative production processes based on a renewable C1 building block. Formate could link the electrical and chemical sectors as its production can be realized through the electrochemical reduction of CO2. Its function could be either a long-term energy storage medium or a starting material in a bioprocess. In this study, formate served as an energy and carbon source for methane production with a formatotrophic mixed culture. It was successfully shown that the theoretical maximum of 0.25 methane per formate can be overcome by co-feeding formate with H2. The production yield doubled to 0.555 ± 0.021 in a CO2-free buffer and 0.591 ± 0.032 in a bicarbonate buffer. With excess CO2 in the bicarbonate buffered culture, it was shown that the H2 transfer rate was the limiting factor for this process. Otherwise, the bicarbonate buffered culture outperformed other buffered cultures in terms of start-up time, formate consumption, and methane production rate. The additional CO2 in the gas phase might have enhanced the growth of methanogens in an early stage of cultivation. 16S sequencing revealed the composition of the cultures. With nearly 25 %, the genus Methanofollis was one of the most dominant strains and the only detectable methanogen in the mixed culture, making it an interesting candidate for formatotrophic methane production. In summary, the co-feeding strategy might be an approach to utilizing formate as feedstock for the bioproduction of methane if hurdles like the H2 transfer rates can be overcome.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of CO2 Utilization
Journal of CO2 Utilization CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.90
自引率
10.40%
发文量
406
审稿时长
2.8 months
期刊介绍: The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials. The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications. The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信