{"title":"Semantic-driven parametric 3D geographic scene modeling: Integrating knowledge graphs and large language models","authors":"Pei Dang , Jun Zhu , Chao Dang , Heng Zhang","doi":"10.1016/j.envsoft.2025.106399","DOIUrl":null,"url":null,"abstract":"<div><div>Parametric geographic scene modeling serves as the primary method for achieving large-scale rapid spatial visualization. However, balancing modeling efficiency and specificity of geographic entities poses significant challenges due to the complexity and diversity of real-world geographic environments. This study proposes a novel 3D geographic scene modeling approach that integrates knowledge graphs and large language models (LLMs). The method leverages the extensive pre-trained knowledge and inference capabilities of LLMs to autonomously infer and enhance semantic information of unknown geographic entities. Through progressive knowledge graphs, it transforms the semantic information of geographic entities into modeling parameters, ultimately achieving more intelligent 3D geographic scene modeling. Our approach addresses current limitations in parametric modeling by offering a flexible and adaptive solution capable of efficiently handling diverse geographic entities. Through case studies and comparative analyses, we examine the inference results and modeling effects under various prompt ratios, validating the effectiveness and advantages of this method.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"188 ","pages":"Article 106399"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225000830","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Parametric geographic scene modeling serves as the primary method for achieving large-scale rapid spatial visualization. However, balancing modeling efficiency and specificity of geographic entities poses significant challenges due to the complexity and diversity of real-world geographic environments. This study proposes a novel 3D geographic scene modeling approach that integrates knowledge graphs and large language models (LLMs). The method leverages the extensive pre-trained knowledge and inference capabilities of LLMs to autonomously infer and enhance semantic information of unknown geographic entities. Through progressive knowledge graphs, it transforms the semantic information of geographic entities into modeling parameters, ultimately achieving more intelligent 3D geographic scene modeling. Our approach addresses current limitations in parametric modeling by offering a flexible and adaptive solution capable of efficiently handling diverse geographic entities. Through case studies and comparative analyses, we examine the inference results and modeling effects under various prompt ratios, validating the effectiveness and advantages of this method.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.