Jin Hyuck Heo, Seok Young Hong, Jin Kyoung Park, Hyong Joon Lee, Fei Zhang, Sang Hyuk Im
{"title":"Chemical oxidization of PTAA enables stable slot-die-coated perovskite solar modules","authors":"Jin Hyuck Heo, Seok Young Hong, Jin Kyoung Park, Hyong Joon Lee, Fei Zhang, Sang Hyuk Im","doi":"10.1016/j.joule.2025.101850","DOIUrl":null,"url":null,"abstract":"The stability of perovskite solar modules has rarely been reported due to inefficient coating reproducibility and charge extraction, especially for the slot-die-coating process. In this study, we regulated the energy-level mismatch and improved the surface wettability by chemical oxidization between antimony trichloride (SbCl<sub>3</sub>) and poly[bis(4-phenyl)](2,4,6-trimethylphenyl)amine (PTAA) through a Lewis acid-base interaction. As a result, charge extraction and coating reproducibility of the slot-die-coated perovskite film were improved. The modules’ power conversion efficiency (PCE) was enhanced to 22.05% and 20.65% (certified 20.33%) with aperture areas of 25 and 64 cm<sup>2</sup> for the rigid substrates and 18.86% with an aperture area of 12 cm<sup>2</sup> for the flexible substrates. Furthermore, the encapsulated SbCl<sub>3</sub>-doped PTAA module devices with an aperture area of 64 cm<sup>2</sup> maintain 90% of the initial PCE after a durability test under continuous 1 sun illumination for 1,000 h at 85°C and 85% relative humidity.","PeriodicalId":343,"journal":{"name":"Joule","volume":"131 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.101850","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The stability of perovskite solar modules has rarely been reported due to inefficient coating reproducibility and charge extraction, especially for the slot-die-coating process. In this study, we regulated the energy-level mismatch and improved the surface wettability by chemical oxidization between antimony trichloride (SbCl3) and poly[bis(4-phenyl)](2,4,6-trimethylphenyl)amine (PTAA) through a Lewis acid-base interaction. As a result, charge extraction and coating reproducibility of the slot-die-coated perovskite film were improved. The modules’ power conversion efficiency (PCE) was enhanced to 22.05% and 20.65% (certified 20.33%) with aperture areas of 25 and 64 cm2 for the rigid substrates and 18.86% with an aperture area of 12 cm2 for the flexible substrates. Furthermore, the encapsulated SbCl3-doped PTAA module devices with an aperture area of 64 cm2 maintain 90% of the initial PCE after a durability test under continuous 1 sun illumination for 1,000 h at 85°C and 85% relative humidity.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.