Yidan Chen , Chenghui Lv , Xilu Ye , Jianfeng Ping , Yibin Ying , Lingyi Lan
{"title":"Hydrogel-based pressure sensors for electronic skin systems","authors":"Yidan Chen , Chenghui Lv , Xilu Ye , Jianfeng Ping , Yibin Ying , Lingyi Lan","doi":"10.1016/j.matt.2025.101992","DOIUrl":null,"url":null,"abstract":"<div><div>The past few decades have witnessed the rapid development of electronic skin (e-skin) systems in various fields. Among the various sensors integrated into e-skin, pressure sensors are of paramount importance due to their ability to mimic the tactile sensing of human skin. Hydrogels have emerged as ideal materials for fabricating pressure sensors, owing to unique similarities to biological tissues and their versatility and flexibility in tailoring mechanical and electrical properties. This review provides a comprehensive overview of hydrogel-based pressure sensors for e-skin. It begins with summarizing the transduction mechanisms of different types of pressure sensors, followed by a detailed analysis of the classification of conductive hydrogels. Additionally, various structure design strategies aimed at enhancing sensing performance are summarized. Subsequently, promising applications, such as healthcare monitoring, tactile recognition, and human-machine interactions, are highlighted. Finally, the challenges and prospects of sensors are discussed, aiming to inspire further innovations in this captivating area of research.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 3","pages":"Article 101992"},"PeriodicalIF":17.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238525000359","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The past few decades have witnessed the rapid development of electronic skin (e-skin) systems in various fields. Among the various sensors integrated into e-skin, pressure sensors are of paramount importance due to their ability to mimic the tactile sensing of human skin. Hydrogels have emerged as ideal materials for fabricating pressure sensors, owing to unique similarities to biological tissues and their versatility and flexibility in tailoring mechanical and electrical properties. This review provides a comprehensive overview of hydrogel-based pressure sensors for e-skin. It begins with summarizing the transduction mechanisms of different types of pressure sensors, followed by a detailed analysis of the classification of conductive hydrogels. Additionally, various structure design strategies aimed at enhancing sensing performance are summarized. Subsequently, promising applications, such as healthcare monitoring, tactile recognition, and human-machine interactions, are highlighted. Finally, the challenges and prospects of sensors are discussed, aiming to inspire further innovations in this captivating area of research.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.