{"title":"Deciphering the stacking language of honeycomb bilayer materials","authors":"Jessica Arcudia , Thomas Heine , Gabriel Merino","doi":"10.1016/j.matt.2025.101987","DOIUrl":null,"url":null,"abstract":"<div><div>Research into two-dimensional materials and their stacking configurations has significantly increased in recent years. Experimental and theoretical studies have revealed unexpected phenomena across various stacking forms. However, a major challenge in studying layered structures is the ambiguous nomenclature in the literature, which complicates comparisons between systems and may lead to omissions of specific stackings. This review addresses the need for a unified framework to categorize stacking arrangements of bilayer honeycomb materials from groups 13–15. We use a uniform ABC notation for nomenclature to facilitate comparative analysis while examining its limitations and emphasizing the need for a robust notation.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 3","pages":"Article 101987"},"PeriodicalIF":17.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259023852500030X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Research into two-dimensional materials and their stacking configurations has significantly increased in recent years. Experimental and theoretical studies have revealed unexpected phenomena across various stacking forms. However, a major challenge in studying layered structures is the ambiguous nomenclature in the literature, which complicates comparisons between systems and may lead to omissions of specific stackings. This review addresses the need for a unified framework to categorize stacking arrangements of bilayer honeycomb materials from groups 13–15. We use a uniform ABC notation for nomenclature to facilitate comparative analysis while examining its limitations and emphasizing the need for a robust notation.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.