{"title":"Reduced Thermal Conductivity in SnSe2 Moiré Superlattices","authors":"Yutong Ran, Chen Meng, Yunpeng Ma, Qian Li, Hongwei Zhu","doi":"10.1021/acsnano.5c00295","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) materials with inherently low thermal conductivity offer significant advantages for thermal management due to constrained phonon transport. The introduction of rotational degrees of freedom in layered 2D materials to form Moiré superlattices enables precise modulation of material properties, including electronic band gaps and phonon scattering mechanisms. While simulations have demonstrated that twisted multilayer Moiré structures can significantly reduce thermal conductivity through enhanced scattering and localized phonon modes, experimental progress has been limited due to challenges in synthesizing multilayer superlattices. In this study, we report the in situ synthesis of SnSe<sub>2</sub> nanosheets with twisted multilayer Moiré structures using a scalable chemical vapor deposition method. These superlattices, exhibiting multiple Moiré periods, achieve a significant reduction in thermal conductivity compared to regular multilayer structures, driven by enhanced phonon scattering, lattice mismatch, and localized phonon modes. This work establishes multilayer Moiré superlattices as a promising and scalable platform for engineering low thermal conductivity 2D materials for advanced energy and electronic applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"11 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c00295","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) materials with inherently low thermal conductivity offer significant advantages for thermal management due to constrained phonon transport. The introduction of rotational degrees of freedom in layered 2D materials to form Moiré superlattices enables precise modulation of material properties, including electronic band gaps and phonon scattering mechanisms. While simulations have demonstrated that twisted multilayer Moiré structures can significantly reduce thermal conductivity through enhanced scattering and localized phonon modes, experimental progress has been limited due to challenges in synthesizing multilayer superlattices. In this study, we report the in situ synthesis of SnSe2 nanosheets with twisted multilayer Moiré structures using a scalable chemical vapor deposition method. These superlattices, exhibiting multiple Moiré periods, achieve a significant reduction in thermal conductivity compared to regular multilayer structures, driven by enhanced phonon scattering, lattice mismatch, and localized phonon modes. This work establishes multilayer Moiré superlattices as a promising and scalable platform for engineering low thermal conductivity 2D materials for advanced energy and electronic applications.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.