Xunli Jiang , Jian-Xin Lu , Xue Luo , Zhen Leng , Chi Sun Poon
{"title":"Enhancing photocatalytic durability of high strength pervious concrete: Micro-mechanical and microscopic mechanisms","authors":"Xunli Jiang , Jian-Xin Lu , Xue Luo , Zhen Leng , Chi Sun Poon","doi":"10.1016/j.cemconcomp.2025.106020","DOIUrl":null,"url":null,"abstract":"<div><div>Nano titanium dioxide (nano-TiO<sub>2</sub>) has been widely used in cement materials to remove nitrogen monoxide (NO), yet the durability of the applied nano-TiO<sub>2</sub> in the cementitious matrix remains a substantial challenge. This study developed a high-strength photocatalytic pervious concrete (HSPPC), and employed a low-pressure cold spraying method to apply the nano-TiO<sub>2</sub> to its surface, aiming to enhance the durability of the photocatalytic coating through synergistic optimization of both the materials and spraying process. The effects of the amount of nano-TiO<sub>2</sub>, spraying methods, and the aggregate-to-binder ratio (A/B) of the previous concrete on NO<sub>x</sub> degradation were determined. Additionally, the interface mechanics and durability enhancement mechanisms of photocatalytic coatings on the HSPPC were revealed through microscale mechanical and microscopic mechanism analyses. The results indicated that the efficiency of NO removal was increased with the increase in the amount of nano-TiO<sub>2</sub>, and A/B ratio. Compared to ordinary pervious concrete, the resistance to seepage scouring and vehicle tire abrasion of HSPPC was significantly improved. Moreover, the combination of HSPPC and the cold spraying method resulted in an efficient synergistic effect, considerably enhancing the durability of the nano-TiO<sub>2</sub> compared to traditional brushing methods. Micromechanical and microstructural analyses revealed that the mesoscopic pore structure formed within the cold-sprayed coating facilitated the formation of hydration products on the HSPPC substrate. This led to the generation of higher polymerization degree of C-S-H gels, which bonded the nano-TiO<sub>2</sub> particles together and enhanced the interfacial bonding with the substrate, effectively improving the cohesion, adhesion, and photocatalytic durability of the nano-TiO<sub>2</sub> coatings.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"160 ","pages":"Article 106020"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946525001027","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nano titanium dioxide (nano-TiO2) has been widely used in cement materials to remove nitrogen monoxide (NO), yet the durability of the applied nano-TiO2 in the cementitious matrix remains a substantial challenge. This study developed a high-strength photocatalytic pervious concrete (HSPPC), and employed a low-pressure cold spraying method to apply the nano-TiO2 to its surface, aiming to enhance the durability of the photocatalytic coating through synergistic optimization of both the materials and spraying process. The effects of the amount of nano-TiO2, spraying methods, and the aggregate-to-binder ratio (A/B) of the previous concrete on NOx degradation were determined. Additionally, the interface mechanics and durability enhancement mechanisms of photocatalytic coatings on the HSPPC were revealed through microscale mechanical and microscopic mechanism analyses. The results indicated that the efficiency of NO removal was increased with the increase in the amount of nano-TiO2, and A/B ratio. Compared to ordinary pervious concrete, the resistance to seepage scouring and vehicle tire abrasion of HSPPC was significantly improved. Moreover, the combination of HSPPC and the cold spraying method resulted in an efficient synergistic effect, considerably enhancing the durability of the nano-TiO2 compared to traditional brushing methods. Micromechanical and microstructural analyses revealed that the mesoscopic pore structure formed within the cold-sprayed coating facilitated the formation of hydration products on the HSPPC substrate. This led to the generation of higher polymerization degree of C-S-H gels, which bonded the nano-TiO2 particles together and enhanced the interfacial bonding with the substrate, effectively improving the cohesion, adhesion, and photocatalytic durability of the nano-TiO2 coatings.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.