Upregulation of COX-2 and NADPH oxidase and reduced eNOS in perivascular adipose tissue are associated with resistance artery dysfunction and hypertension in naturally aged mice

Grazielle Caroline da Silva, Maisa Nascimento Soares Amaral, Diogo Barros Peruchetti, Virginia Soares Lemos
{"title":"Upregulation of COX-2 and NADPH oxidase and reduced eNOS in perivascular adipose tissue are associated with resistance artery dysfunction and hypertension in naturally aged mice","authors":"Grazielle Caroline da Silva, Maisa Nascimento Soares Amaral, Diogo Barros Peruchetti, Virginia Soares Lemos","doi":"10.1093/gerona/glaf050","DOIUrl":null,"url":null,"abstract":"Aging is a major risk factor for cardiovascular disease, with hypertension being the most common outcome. Hypertension often stems from resistance arteries endothelial dysfunction. Recent research highlights the pivotal role of perivascular adipose tissue (PVAT) in regulating endothelial function. We hypothesized that PVAT senescence contributes to vascular dysfunction and hypertension during aging. We showed that naturally aged mice developed hypertension and elevated pro-inflammatory cytokines levels. Moreover, resistance mesenteric arteries showed impaired vascular relaxation that was normalized by apocynin, an antioxidant. The vascular dysfunction was endothelium- and PVAT-dependent, and marked by: decreased NO- and COX-dependent vascular relaxation, decreased expression of endothelial nitric oxide synthase (eNOS), and increased cyclooxygenase 2 (COX-2) and NADPH oxidase subunits p22phox and gp91phox expressions in the endothelium and PVAT. Additionally, we observed that PVAT shows greater signs of senescence, particularly with higher p16 expression, indicating that PVAT is more prone to age-related cellular aging. Our findings suggest that in resistance mesenteric arteries PVAT-derived factors are crucial for triggering and amplifying vascular dysfunction in aging, leading to hypertension. The underlying mechanisms involve downregulation of eNOS-derived NO, NADPH-oxidase-dependent oxidative stress, and COX-2-derived vascular contractile factors. This research improves our understanding of the mechanisms behind age-related vascular dysfunction and associated hypertension and opens perspectives for targeted therapeutic strategies.","PeriodicalId":22892,"journal":{"name":"The Journals of Gerontology Series A: Biological Sciences and Medical Sciences","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journals of Gerontology Series A: Biological Sciences and Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gerona/glaf050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aging is a major risk factor for cardiovascular disease, with hypertension being the most common outcome. Hypertension often stems from resistance arteries endothelial dysfunction. Recent research highlights the pivotal role of perivascular adipose tissue (PVAT) in regulating endothelial function. We hypothesized that PVAT senescence contributes to vascular dysfunction and hypertension during aging. We showed that naturally aged mice developed hypertension and elevated pro-inflammatory cytokines levels. Moreover, resistance mesenteric arteries showed impaired vascular relaxation that was normalized by apocynin, an antioxidant. The vascular dysfunction was endothelium- and PVAT-dependent, and marked by: decreased NO- and COX-dependent vascular relaxation, decreased expression of endothelial nitric oxide synthase (eNOS), and increased cyclooxygenase 2 (COX-2) and NADPH oxidase subunits p22phox and gp91phox expressions in the endothelium and PVAT. Additionally, we observed that PVAT shows greater signs of senescence, particularly with higher p16 expression, indicating that PVAT is more prone to age-related cellular aging. Our findings suggest that in resistance mesenteric arteries PVAT-derived factors are crucial for triggering and amplifying vascular dysfunction in aging, leading to hypertension. The underlying mechanisms involve downregulation of eNOS-derived NO, NADPH-oxidase-dependent oxidative stress, and COX-2-derived vascular contractile factors. This research improves our understanding of the mechanisms behind age-related vascular dysfunction and associated hypertension and opens perspectives for targeted therapeutic strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信