Mitochondrial PGAM5 modulates methionine metabolism and feather follicle development by targeting Wnt/β-catenin signaling pathway in broiler chickens

IF 7 1区 农林科学 Q1 Agricultural and Biological Sciences
Sheng Zhang, Yijun Chen, Yaxue Lv, Yuqing Feng, Chunqi Gao
{"title":"Mitochondrial PGAM5 modulates methionine metabolism and feather follicle development by targeting Wnt/β-catenin signaling pathway in broiler chickens","authors":"Sheng Zhang, Yijun Chen, Yaxue Lv, Yuqing Feng, Chunqi Gao","doi":"10.1186/s40104-025-01176-y","DOIUrl":null,"url":null,"abstract":"Poor feather growth not only affects the appearance of the organism but also decreases the feed efficiency. Methionine (Met) is an essential amino acid required for feather follicle development; yet the exact mechanism involved remains insufficiently understood. A total of 180 1-day-old broilers were selected and randomly divided into 3 treatments: control group (0.45% Met), Met-deficiency group (0.25% Met), and Met-rescue group (0.45% Met in the pre-trial period and 0.25% Met in the post-trial period). The experimental period lasted for 56 d, with a pre-trial period of 1–28 d and a post-trial period of 29–56 d. In addition, Met-deficiency and Met-rescue models were constructed in feather follicle epidermal stem cell by controlling the supply of Met in the culture medium. Dietary Met-deficiency significantly (P < 0.05) reduced the ADG, ADFI and F/G, and inhibited feather follicle development. Met supplementation significantly (P < 0.05) improved growth performance and the feather growth in broilers. Met-rescue may promote feather growth in broilers by activating the Wnt/β-catenin signaling pathway (GSK-3β, CK1, Axin1, β-catenin, Active β-catenin, TCF4, and Cyclin D1). Compared with Met-deficiency group, Met-rescue significantly (P < 0.05) increased the activity of feather follicle epidermal stem cell and mitochondrial membrane potential, activated Wnt/β-catenin signaling pathway, and decreased the content of reactive oxygen species (P < 0.05). CO-IP confirmed that mitochondrial protein PGAM5 interacted with Axin1, the scaffold protein of the disruption complex of the Wnt/β-catenin signaling pathway, and directly mediated Met regulation of Wnt/β-catenin signaling pathway and feather follicle development. PGAM5 binding to Axin1 mediates the regulation of Wnt/β-catenin signaling pathway, and promotes feather follicle development and feather growth of broiler chickens through Met supplementation. These results provide theoretical support for the improvement of economic value and production efficiency of broiler chickens.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"28 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s40104-025-01176-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Poor feather growth not only affects the appearance of the organism but also decreases the feed efficiency. Methionine (Met) is an essential amino acid required for feather follicle development; yet the exact mechanism involved remains insufficiently understood. A total of 180 1-day-old broilers were selected and randomly divided into 3 treatments: control group (0.45% Met), Met-deficiency group (0.25% Met), and Met-rescue group (0.45% Met in the pre-trial period and 0.25% Met in the post-trial period). The experimental period lasted for 56 d, with a pre-trial period of 1–28 d and a post-trial period of 29–56 d. In addition, Met-deficiency and Met-rescue models were constructed in feather follicle epidermal stem cell by controlling the supply of Met in the culture medium. Dietary Met-deficiency significantly (P < 0.05) reduced the ADG, ADFI and F/G, and inhibited feather follicle development. Met supplementation significantly (P < 0.05) improved growth performance and the feather growth in broilers. Met-rescue may promote feather growth in broilers by activating the Wnt/β-catenin signaling pathway (GSK-3β, CK1, Axin1, β-catenin, Active β-catenin, TCF4, and Cyclin D1). Compared with Met-deficiency group, Met-rescue significantly (P < 0.05) increased the activity of feather follicle epidermal stem cell and mitochondrial membrane potential, activated Wnt/β-catenin signaling pathway, and decreased the content of reactive oxygen species (P < 0.05). CO-IP confirmed that mitochondrial protein PGAM5 interacted with Axin1, the scaffold protein of the disruption complex of the Wnt/β-catenin signaling pathway, and directly mediated Met regulation of Wnt/β-catenin signaling pathway and feather follicle development. PGAM5 binding to Axin1 mediates the regulation of Wnt/β-catenin signaling pathway, and promotes feather follicle development and feather growth of broiler chickens through Met supplementation. These results provide theoretical support for the improvement of economic value and production efficiency of broiler chickens.
线粒体PGAM5通过Wnt/β-catenin信号通路调控肉鸡蛋氨酸代谢和羽毛卵泡发育
羽毛生长不良不仅影响生物的外观,而且降低了饲料效率。蛋氨酸是羽毛毛囊发育所必需的氨基酸;然而,其中的确切机制仍未得到充分了解。选取180只1日龄肉仔鸡,随机分为对照组(0.45%蛋氨酸)、缺Met组(0.25%蛋氨酸)和Met拯救组(预试期0.45%蛋氨酸,试后期0.25%蛋氨酸)3个处理。试验期56 d,预试期1 ~ 28 d,正试期29 ~ 56 d。通过控制培养基中Met的供给,在羽毛毛囊表皮干细胞中构建Met缺乏模型和Met拯救模型。饲粮缺乏硒显著(P < 0.05)降低了日增重、ADFI和料重比,抑制了毛囊发育。饲粮中添加蛋氨酸显著(P < 0.05)提高了肉仔鸡的生长性能和羽毛生长。Met-rescue可能通过激活Wnt/β-catenin信号通路(GSK-3β、CK1、Axin1、β-catenin、Active β-catenin、TCF4和Cyclin D1)促进肉仔鸡羽毛生长。与缺乏met组相比,Met-rescue显著(P < 0.05)提高了羽毛毛囊表皮干细胞活性和线粒体膜电位,激活了Wnt/β-catenin信号通路,降低了活性氧含量(P < 0.05)。CO-IP证实线粒体蛋白PGAM5与Wnt/β-catenin信号通路断裂复合物的支架蛋白Axin1相互作用,直接介导Met对Wnt/β-catenin信号通路和羽毛毛囊发育的调控。PGAM5结合Axin1介导Wnt/β-catenin信号通路调控,通过补充蛋氨酸促进肉仔鸡羽毛毛囊发育和羽毛生长。研究结果为提高肉鸡经济价值和生产效率提供了理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Animal Science and Biotechnology
Journal of Animal Science and Biotechnology AGRICULTURE, DAIRY & ANIMAL SCIENCE-
CiteScore
9.90
自引率
2.90%
发文量
822
审稿时长
17 weeks
期刊介绍: Journal of Animal Science and Biotechnology is an open access, peer-reviewed journal that encompasses all aspects of animal science and biotechnology. That includes domestic animal production, animal genetics and breeding, animal reproduction and physiology, animal nutrition and biochemistry, feed processing technology and bioevaluation, animal biotechnology, and meat science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信