Atmospheric methane consumption in arid ecosystems acts as a reverse chimney and is accelerated by plant-methanotroph biomes

Nathalie A Delherbe, Oscar Gomez, Alvaro M Plominsky, Aaron Oliver, Maximino Manzanera, Marina G Kalyuzhnaya
{"title":"Atmospheric methane consumption in arid ecosystems acts as a reverse chimney and is accelerated by plant-methanotroph biomes","authors":"Nathalie A Delherbe, Oscar Gomez, Alvaro M Plominsky, Aaron Oliver, Maximino Manzanera, Marina G Kalyuzhnaya","doi":"10.1093/ismejo/wraf026","DOIUrl":null,"url":null,"abstract":"Drylands cover one-third of the Earth’s surface and are one of the largest terrestrial sinks for methane. Understanding the structure–function interplay between members of arid biomes can provide critical insights into mechanisms of resilience toward anthropogenic and climate-change-driven environmental stressors—water scarcity, heatwaves, and increased atmospheric greenhouse gases. This study integrates in situ measurements with culture-independent and enrichment-based investigations of methane-consuming microbiomes inhabiting soil in the Anza-Borrego Desert, a model arid ecosystem in Southern California, United States. The atmospheric methane consumption ranged between 2.26 to 12.73 μmol m2 h−1, peaking during the daytime at vegetated sites. Metagenomic studies revealed similar soil-microbiome compositions at vegetated and unvegetated sites, with Methylocaldum being the major methanotrophic clade. Eighty-four metagenome-assembled genomes were recovered, six represented by methanotrophic bacteria (three Methylocaldum, two Methylobacter, and uncultivated Methylococcaceae). The prevalence of copper-containing methane monooxygenases in metagenomic datasets suggests a diverse potential for methane oxidation in canonical methanotrophs and uncultivated Gammaproteobacteria. Five pure cultures of methanotrophic bacteria were obtained, including four Methylocaldum. Genomic analysis of Methylocaldum isolates and metagenome-assembled genomes revealed the presence of multiple stand-alone methane monooxygenase subunit C paralogs, which may have functions beyond methane oxidation. Furthermore, these methanotrophs have genetic signatures typically linked to symbiotic interactions with plants, including tryptophan synthesis and indole-3-acetic acid production. Based on in situ fluxes and soil microbiome compositions, we propose the existence of arid-soil reverse chimneys, an empowered methane sink represented by yet-to-be-defined cooperation between desert vegetation and methane-consuming microbiomes.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"131 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Drylands cover one-third of the Earth’s surface and are one of the largest terrestrial sinks for methane. Understanding the structure–function interplay between members of arid biomes can provide critical insights into mechanisms of resilience toward anthropogenic and climate-change-driven environmental stressors—water scarcity, heatwaves, and increased atmospheric greenhouse gases. This study integrates in situ measurements with culture-independent and enrichment-based investigations of methane-consuming microbiomes inhabiting soil in the Anza-Borrego Desert, a model arid ecosystem in Southern California, United States. The atmospheric methane consumption ranged between 2.26 to 12.73 μmol m2 h−1, peaking during the daytime at vegetated sites. Metagenomic studies revealed similar soil-microbiome compositions at vegetated and unvegetated sites, with Methylocaldum being the major methanotrophic clade. Eighty-four metagenome-assembled genomes were recovered, six represented by methanotrophic bacteria (three Methylocaldum, two Methylobacter, and uncultivated Methylococcaceae). The prevalence of copper-containing methane monooxygenases in metagenomic datasets suggests a diverse potential for methane oxidation in canonical methanotrophs and uncultivated Gammaproteobacteria. Five pure cultures of methanotrophic bacteria were obtained, including four Methylocaldum. Genomic analysis of Methylocaldum isolates and metagenome-assembled genomes revealed the presence of multiple stand-alone methane monooxygenase subunit C paralogs, which may have functions beyond methane oxidation. Furthermore, these methanotrophs have genetic signatures typically linked to symbiotic interactions with plants, including tryptophan synthesis and indole-3-acetic acid production. Based on in situ fluxes and soil microbiome compositions, we propose the existence of arid-soil reverse chimneys, an empowered methane sink represented by yet-to-be-defined cooperation between desert vegetation and methane-consuming microbiomes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信