Genome diversification of symbiotic fungi in beetle-fungus mutualistic symbioses

Yin-Tse Huang, Khaled Abdrabo El-Sayid Abdrabo, Guan Jie Phang, Yu-Hsuan Fan, Yu-Ting Wu, Jie-Hao Ou, Jiri Hulcr
{"title":"Genome diversification of symbiotic fungi in beetle-fungus mutualistic symbioses","authors":"Yin-Tse Huang, Khaled Abdrabo El-Sayid Abdrabo, Guan Jie Phang, Yu-Hsuan Fan, Yu-Ting Wu, Jie-Hao Ou, Jiri Hulcr","doi":"10.1093/ismejo/wraf039","DOIUrl":null,"url":null,"abstract":"Ambrosia beetles and their fungal symbionts represent a widespread and diverse insect-fungus mutualism. This study investigates the genomic adaptations associated with the evolution of the ambrosia lifestyle across multiple fungal lineages. We performed comparative genomic analyses on 70 fungal genomes from four families (Irpicaceae, Ceratocystidaceae, Nectriaceae, and Ophiostomataceae), including 24 ambrosia and 34 non-ambrosia lineages. Our phylogenomic analyses reveal multiple independent colonization of insect vectors by the fungi, spanning from the mid-Cretaceous (114.6 Ma) to the early Quaternary (1.9 Ma). Contrary to expectations for obligate symbionts, ambrosia fungi showed no significant genome-wide modification in size, gene count, or secreted protein repertoire compared to their non-symbiotic relatives. Instead, we observed conservation of most assessed genomic features; where genome traits differ between free-living relatives and ambrosia fungi, the changes are lineage-specific, not convergent. Key findings include lineage-specific expansions in carbohydrate-active enzyme families (AA4 in Nectriaceae, CE4 in Ophiostomataceae, and GH3 in Ophiostomataceae and Ceratocystidaceae), suggesting potential enhancement or loss of lignin modification, hemicellulose deacetylation, and cellulose degradation in different ambrosia lineages. Repeat-Induced Point mutation analysis revealed family-specific patterns rather than lifestyle-associated differences. These results highlight the diverse genomic strategies employed by ambrosia fungi, demonstrating that symbiont evolution can proceed through refined, lineage-specific changes rather than genome-wide, or convergent alterations. Our genomic analyses do not reveal patterns typically associated with domestication in these ambrosia fungi, suggesting they may represent free-living fungi that co-opted wood boring beetles as vectors through subtle, lineage-specific adaptations.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ambrosia beetles and their fungal symbionts represent a widespread and diverse insect-fungus mutualism. This study investigates the genomic adaptations associated with the evolution of the ambrosia lifestyle across multiple fungal lineages. We performed comparative genomic analyses on 70 fungal genomes from four families (Irpicaceae, Ceratocystidaceae, Nectriaceae, and Ophiostomataceae), including 24 ambrosia and 34 non-ambrosia lineages. Our phylogenomic analyses reveal multiple independent colonization of insect vectors by the fungi, spanning from the mid-Cretaceous (114.6 Ma) to the early Quaternary (1.9 Ma). Contrary to expectations for obligate symbionts, ambrosia fungi showed no significant genome-wide modification in size, gene count, or secreted protein repertoire compared to their non-symbiotic relatives. Instead, we observed conservation of most assessed genomic features; where genome traits differ between free-living relatives and ambrosia fungi, the changes are lineage-specific, not convergent. Key findings include lineage-specific expansions in carbohydrate-active enzyme families (AA4 in Nectriaceae, CE4 in Ophiostomataceae, and GH3 in Ophiostomataceae and Ceratocystidaceae), suggesting potential enhancement or loss of lignin modification, hemicellulose deacetylation, and cellulose degradation in different ambrosia lineages. Repeat-Induced Point mutation analysis revealed family-specific patterns rather than lifestyle-associated differences. These results highlight the diverse genomic strategies employed by ambrosia fungi, demonstrating that symbiont evolution can proceed through refined, lineage-specific changes rather than genome-wide, or convergent alterations. Our genomic analyses do not reveal patterns typically associated with domestication in these ambrosia fungi, suggesting they may represent free-living fungi that co-opted wood boring beetles as vectors through subtle, lineage-specific adaptations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信