Simone E. D’Aurelio, Matthias J. Bayerbach, Stefanie Barz
{"title":"Boosted quantum teleportation","authors":"Simone E. D’Aurelio, Matthias J. Bayerbach, Stefanie Barz","doi":"10.1038/s41534-025-00992-4","DOIUrl":null,"url":null,"abstract":"<p>Quantum teleportation has proven to be fundamental for many quantum information and communication processes. The core concept can be exploited in many tasks, from the transmission of quantum states, quantum repeaters, to quantum computing. However, for linear-optical systems, the efficiency of teleportation is directly linked to the success probability of the involved Bell-state measurement (BSM). In most implementations, this is realized by linear optics with an intrinsically limited success probability of 50%. Here, we demonstrate quantum teleportation surpassing this limit. We achieve an average fidelity of the teleported states of 0.8677 ± 0.0024, leading to an overall acceptance rate of the teleportation of 69.71 ± 0.75%. We obtain this boosted success probability by generating ancillary photonic states that are interfered with the Bell states. Thus, our work demonstrates the boosting BSMs in quantum-technology applications and our scheme could directly be applied to, e.g., quantum repeaters.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"67 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-00992-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum teleportation has proven to be fundamental for many quantum information and communication processes. The core concept can be exploited in many tasks, from the transmission of quantum states, quantum repeaters, to quantum computing. However, for linear-optical systems, the efficiency of teleportation is directly linked to the success probability of the involved Bell-state measurement (BSM). In most implementations, this is realized by linear optics with an intrinsically limited success probability of 50%. Here, we demonstrate quantum teleportation surpassing this limit. We achieve an average fidelity of the teleported states of 0.8677 ± 0.0024, leading to an overall acceptance rate of the teleportation of 69.71 ± 0.75%. We obtain this boosted success probability by generating ancillary photonic states that are interfered with the Bell states. Thus, our work demonstrates the boosting BSMs in quantum-technology applications and our scheme could directly be applied to, e.g., quantum repeaters.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.