Identifying perturbations that boost T-cell infiltration into tumours via counterfactual learning of their spatial proteomic profiles

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Zitong Jerry Wang, Abdullah S. Farooq, Yu-Jen Chen, Aman Bhargava, Alexander M. Xu, Matt W. Thomson
{"title":"Identifying perturbations that boost T-cell infiltration into tumours via counterfactual learning of their spatial proteomic profiles","authors":"Zitong Jerry Wang, Abdullah S. Farooq, Yu-Jen Chen, Aman Bhargava, Alexander M. Xu, Matt W. Thomson","doi":"10.1038/s41551-025-01357-0","DOIUrl":null,"url":null,"abstract":"<p>Cancer progression can be slowed down or halted via the activation of either endogenous or engineered T cells and their infiltration of the tumour microenvironment. Here we describe a deep-learning model that uses large-scale spatial proteomic profiles of tumours to generate minimal tumour perturbations that boost T-cell infiltration. The model integrates a counterfactual optimization strategy for the generation of the perturbations with the prediction of T-cell infiltration as a self-supervised machine learning problem. We applied the model to 368 samples of metastatic melanoma and colorectal cancer assayed using 40-plex imaging mass cytometry, and discovered cohort-dependent combinatorial perturbations (CXCL9, CXCL10, CCL22 and CCL18 for melanoma, and CXCR4, PD-1, PD-L1 and CYR61 for colorectal cancer) that support T-cell infiltration across patient cohorts, as confirmed via in vitro experiments. Leveraging counterfactual-based predictions of spatial omics data may aid the design of cancer therapeutics.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"194 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01357-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer progression can be slowed down or halted via the activation of either endogenous or engineered T cells and their infiltration of the tumour microenvironment. Here we describe a deep-learning model that uses large-scale spatial proteomic profiles of tumours to generate minimal tumour perturbations that boost T-cell infiltration. The model integrates a counterfactual optimization strategy for the generation of the perturbations with the prediction of T-cell infiltration as a self-supervised machine learning problem. We applied the model to 368 samples of metastatic melanoma and colorectal cancer assayed using 40-plex imaging mass cytometry, and discovered cohort-dependent combinatorial perturbations (CXCL9, CXCL10, CCL22 and CCL18 for melanoma, and CXCR4, PD-1, PD-L1 and CYR61 for colorectal cancer) that support T-cell infiltration across patient cohorts, as confirmed via in vitro experiments. Leveraging counterfactual-based predictions of spatial omics data may aid the design of cancer therapeutics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信