Novel Approach to Screen Endocrine-Disrupting Chemicals via Endocrine-Enhanced Reduced Human Transcriptome

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Tianle Fan, Tianhao Han, Aoran Gu, Jinsha Jin, Qian Cui, Jing Guo, Xiaowei Zhang, Hongxia Yu, Wei Shi
{"title":"Novel Approach to Screen Endocrine-Disrupting Chemicals via Endocrine-Enhanced Reduced Human Transcriptome","authors":"Tianle Fan, Tianhao Han, Aoran Gu, Jinsha Jin, Qian Cui, Jing Guo, Xiaowei Zhang, Hongxia Yu, Wei Shi","doi":"10.1021/acs.est.4c13159","DOIUrl":null,"url":null,"abstract":"Endocrine-disrupting chemicals (EDCs) can interfere with multiple pathways and trigger different modes of action. Thus, the traditional EDC in vitro screening processes often require a battery of bioassays to cover multiple target pathways. Here we developed an endocrine-enhanced reduced human transcriptome (ERHT) focused on hormone receptor signaling induced by the EDCs regulating specific genes. ERHT was developed based on 1200 prioritized genes covering 110 endocrine-related biological pathways across eight potential adverse outcomes. The ability of this approach to identify EDCs was derived from machine learning of 1068 dose-dependent transcriptome profiles and enhanced by quantifying chemical-induced critical pathway responses, and thus, it demonstrated excellent classification performance (AUC = 0.84 ± 0.03) in internal cross-validation. We ultimately applied this approach to known EDCs and inactive substances to validate the reliability of this approach. Through external validation on 210 chemicals, the extrapolation accuracy exceeded 80%, demonstrating the outstanding practical performance of this approach. Meanwhile, the pathway responses induced by the same chemical were consistent with the experimental results reported by multiple sequencing platforms, highlighting the robustness of this approach. The above results demonstrate that this approach can provide novel insights for EDCs’ high-throughput screening and comprehensive toxic mechanisms through biological pathways.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c13159","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Endocrine-disrupting chemicals (EDCs) can interfere with multiple pathways and trigger different modes of action. Thus, the traditional EDC in vitro screening processes often require a battery of bioassays to cover multiple target pathways. Here we developed an endocrine-enhanced reduced human transcriptome (ERHT) focused on hormone receptor signaling induced by the EDCs regulating specific genes. ERHT was developed based on 1200 prioritized genes covering 110 endocrine-related biological pathways across eight potential adverse outcomes. The ability of this approach to identify EDCs was derived from machine learning of 1068 dose-dependent transcriptome profiles and enhanced by quantifying chemical-induced critical pathway responses, and thus, it demonstrated excellent classification performance (AUC = 0.84 ± 0.03) in internal cross-validation. We ultimately applied this approach to known EDCs and inactive substances to validate the reliability of this approach. Through external validation on 210 chemicals, the extrapolation accuracy exceeded 80%, demonstrating the outstanding practical performance of this approach. Meanwhile, the pathway responses induced by the same chemical were consistent with the experimental results reported by multiple sequencing platforms, highlighting the robustness of this approach. The above results demonstrate that this approach can provide novel insights for EDCs’ high-throughput screening and comprehensive toxic mechanisms through biological pathways.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信