Justin H. Wilde, Yu-Yo Sun, Spenser R. Simpson, Ethan R. Hill, Zhongxiao Fu, Emily J. Bian, Melissa M. Kinkaid, Paulina Villanueva, Aden F. Weybright, William R. Terrell, Zoraiz Qureshi, Shashika S. Perera, Heather S. Sheppard, James R. Stone, Bijoy K. Kundu, Chia-Yi Kuan, Kiel D. Neumann
{"title":"A positron emission tomography tracer for the imaging of oxidative stress in the central nervous system","authors":"Justin H. Wilde, Yu-Yo Sun, Spenser R. Simpson, Ethan R. Hill, Zhongxiao Fu, Emily J. Bian, Melissa M. Kinkaid, Paulina Villanueva, Aden F. Weybright, William R. Terrell, Zoraiz Qureshi, Shashika S. Perera, Heather S. Sheppard, James R. Stone, Bijoy K. Kundu, Chia-Yi Kuan, Kiel D. Neumann","doi":"10.1038/s41551-025-01362-3","DOIUrl":null,"url":null,"abstract":"<p>Reactive oxygen and nitrogen species (RONS) contribute to the pathogenesis of neurodegeneration, but the inability to detect RONS in vivo in the central nervous system has confounded the interpretation of results of clinical trials of antioxidants. Here we report the synthesis and characterization of a positron emission tomography (PET) probe, [<sup>18</sup>F]fluoroedaravone ([<sup>18</sup>F]FEDV), for the in vivo quantification of oxidative stress. Derived from the antioxidant edaravone, the probe can diffuse through the blood–brain barrier and is stable in human plasma. In mice, PET imaging with [<sup>18</sup>F]FEDV allowed for the detection of RONS after intrastriatal injection of sodium nitroprusside, in the middle cerebral artery after stroke by photothrombosis, and in brains with tauopathy. When using dynamic PET imaging coupled with parametric mapping, the sensitivity of [<sup>18</sup>F]FEDV-PET to RONS allowed for the detection of increased oxidative stress. [<sup>18</sup>F]FEDV-PET could be used to quantify RONS longitudinally in vivo and to assess the results of clinical studies of antioxidants.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"22 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01362-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive oxygen and nitrogen species (RONS) contribute to the pathogenesis of neurodegeneration, but the inability to detect RONS in vivo in the central nervous system has confounded the interpretation of results of clinical trials of antioxidants. Here we report the synthesis and characterization of a positron emission tomography (PET) probe, [18F]fluoroedaravone ([18F]FEDV), for the in vivo quantification of oxidative stress. Derived from the antioxidant edaravone, the probe can diffuse through the blood–brain barrier and is stable in human plasma. In mice, PET imaging with [18F]FEDV allowed for the detection of RONS after intrastriatal injection of sodium nitroprusside, in the middle cerebral artery after stroke by photothrombosis, and in brains with tauopathy. When using dynamic PET imaging coupled with parametric mapping, the sensitivity of [18F]FEDV-PET to RONS allowed for the detection of increased oxidative stress. [18F]FEDV-PET could be used to quantify RONS longitudinally in vivo and to assess the results of clinical studies of antioxidants.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.