All-Polymer Bulk-Heterojunction Enables Stable Monolithic Perovskite/Organic Tandem Solar Cells with High Efficiency

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-05 DOI:10.1002/smll.202411031
Yan Wang, Baoze Liu, Dong Zhang, Han Yu, Xin Wu, Danpeng Gao, Bo Li, Chunlei Zhang, Wei Liu, Zexin Yu, Ning Wang, Lina Wang, Xintong Li, He Yan, Zonglong Zhu
{"title":"All-Polymer Bulk-Heterojunction Enables Stable Monolithic Perovskite/Organic Tandem Solar Cells with High Efficiency","authors":"Yan Wang,&nbsp;Baoze Liu,&nbsp;Dong Zhang,&nbsp;Han Yu,&nbsp;Xin Wu,&nbsp;Danpeng Gao,&nbsp;Bo Li,&nbsp;Chunlei Zhang,&nbsp;Wei Liu,&nbsp;Zexin Yu,&nbsp;Ning Wang,&nbsp;Lina Wang,&nbsp;Xintong Li,&nbsp;He Yan,&nbsp;Zonglong Zhu","doi":"10.1002/smll.202411031","DOIUrl":null,"url":null,"abstract":"<p>Perovskite-based tandem solar cells (PTSCs) are promising for achieving higher efficiency limits, making them promising candidates for energy supply. However, the commercialization in complex scenarios necessitate extreme stability and reliability of tandem devices, particularly in ambient conditions. Herein, the use of a high-efficiency and air-stable quaternary all-polymer bulk heterojunction (BHJ) is pioneered to optimize spectral absorption, facilitate charge transport, and suppress exciton recombination, resulting in 18.0% of power conversion efficiency (PCE) in the organic subcell. The resultant monolithic perovskite/organic tandem solar cell (POTSC) delivers an impressive PCE of 24.8%, with minimal efficiency distribution and negligible hysteresis. Ambient stability tests on tandem devices reveal  outstanding ambient stability, which is attributed to the reduced increase in exciton recombination. Remarkably, the unencapsulated tandem device maintained 88% of its initial efficiency after exposure to air for 500 h. The superior stability is owing to the enhanced resistance of the hydrophobic all-polymer BHJ to water and oxygen, thereby protecting the perovskite active layer. This work provides a novel approach from an organic perspective for achieving superior efficiency and stability in POTSC devices and holds promise for future real-world applications in the field of tandem solar cells.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 13","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202411031","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite-based tandem solar cells (PTSCs) are promising for achieving higher efficiency limits, making them promising candidates for energy supply. However, the commercialization in complex scenarios necessitate extreme stability and reliability of tandem devices, particularly in ambient conditions. Herein, the use of a high-efficiency and air-stable quaternary all-polymer bulk heterojunction (BHJ) is pioneered to optimize spectral absorption, facilitate charge transport, and suppress exciton recombination, resulting in 18.0% of power conversion efficiency (PCE) in the organic subcell. The resultant monolithic perovskite/organic tandem solar cell (POTSC) delivers an impressive PCE of 24.8%, with minimal efficiency distribution and negligible hysteresis. Ambient stability tests on tandem devices reveal  outstanding ambient stability, which is attributed to the reduced increase in exciton recombination. Remarkably, the unencapsulated tandem device maintained 88% of its initial efficiency after exposure to air for 500 h. The superior stability is owing to the enhanced resistance of the hydrophobic all-polymer BHJ to water and oxygen, thereby protecting the perovskite active layer. This work provides a novel approach from an organic perspective for achieving superior efficiency and stability in POTSC devices and holds promise for future real-world applications in the field of tandem solar cells.

Abstract Image

Abstract Image

全聚合物体异质结使稳定的单片钙钛矿/有机串联太阳能电池具有高效率
钙钛矿基串联太阳能电池(PTSCs)有望实现更高的效率限制,使其成为能源供应的有希望的候选者。然而,在复杂场景下的商业化需要串联设备的极端稳定性和可靠性,特别是在环境条件下。本研究首次利用高效、空气稳定的四元全聚合物体异质结(BHJ)优化了光谱吸收,促进了电荷传输,抑制了激子重组,从而使有机亚电池的功率转换效率(PCE)提高了18.0%。由此产生的单片钙钛矿/有机串联太阳能电池(POTSC)提供了令人印象深刻的24.8%的PCE,具有最小的效率分布和可忽略的滞后。对串联器件的环境稳定性测试显示出出色的环境稳定性,这归因于激子复合的增加减少。值得注意的是,未封装的串联装置在空气中暴露500小时后仍保持其初始效率的88%。优越的稳定性是由于疏水全聚合物BHJ对水和氧的抵抗力增强,从而保护了钙钛矿活性层。这项工作从有机的角度为实现POTSC器件的卓越效率和稳定性提供了一种新的方法,并为未来串联太阳能电池领域的实际应用提供了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信